ETF MATF FON GRF FORUM

Prijemni ispit na Elektrotehničkom fakultetu u Beogradu

29. jun 2004.


Test ima [inline]20[/inline] zadataka na [inline]2[/inline] stranice. Zadaci [inline]1–2[/inline] vrede po [inline]3[/inline] poena, zadaci [inline]3–7[/inline] vrede po [inline]4[/inline] poena, zadaci [inline]8–13[/inline] vrede po [inline]5[/inline] poena, zadaci [inline]14–18[/inline] vrede po [inline]6[/inline] poena i zadaci [inline]19–20[/inline] po [inline]7[/inline] poena. Pogrešan odgovor donosi [inline]−10\%[/inline] od broja poena predviđenih za tačan odgovor. Zaokruživanje [inline]N[/inline] ne donosi ni pozitivne ni negativne poene. U slučaju zaokruživanja više od jednog odgovora, kao i nezaokruživanja nijednog odgovora, dobija se [inline]−1[/inline] poen.

1.Link zadatka Ako je [inline]i[/inline] imaginarna jedinica onda je količnik [inline]\displaystyle\frac{i^{2004}+i^{2005}}{i^{2003}-i^{2002}}[/inline] jednak:
[inline]\text{A)}[/inline] [inline]0[/inline];      [inline]\text{B)}[/inline] [inline]-i[/inline];      [inline]\text{C)}[/inline] [inline]1[/inline];      [inline]\text{D)}[/inline] [inline]-1[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]i[/inline];              [inline]\text{N)}[/inline] Ne znam.

2.Link zadatka Vrednost izraza [inline]\displaystyle\left[\left(1+\frac{1}{2}\right)^{-1}:\left(1+\frac{1}{3}\right)\right]^{-2}\cdot\left(1+\frac{1}{4}\right)[/inline] jednaka je:
[inline]\enclose{circle}{\text{A)}}[/inline] [inline]5[/inline];      [inline]\text{B)}[/inline] [inline]0.2[/inline];      [inline]\text{C)}[/inline] [inline]1[/inline];      [inline]\text{D)}[/inline] [inline]0.5[/inline];      [inline]\text{E)}[/inline] [inline]3[/inline];              [inline]\text{N)}[/inline] Ne znam.

3.Link zadatka Zbir svih celobrojnih vrednosti [inline]x[/inline] takvih da važi jednakost [inline]\bigl|5-|x|\bigr|=5-|x|[/inline] je:
[inline]\text{A)}[/inline] [inline]12[/inline];      [inline]\text{B)}[/inline] [inline]10[/inline];      [inline]\text{C)}[/inline] [inline]5[/inline];      [inline]\text{D)}[/inline] [inline]2[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]0[/inline];              [inline]\text{N)}[/inline] Ne znam.

4.Link zadatka Ako je [inline]a>b>0[/inline] i [inline]a^2+b^2=6ab[/inline], tada je [inline]\displaystyle\frac{a+b}{a-b}[/inline] jednako:
[inline]\text{A)}[/inline] [inline]-\sqrt2[/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]\sqrt2[/inline];      [inline]\text{C)}[/inline] [inline]\sqrt6[/inline];      [inline]\text{D)}[/inline] [inline]1[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{1}{\sqrt2}[/inline];              [inline]\text{N)}[/inline] Ne znam.

5.Link zadatka Ako je [inline]\displaystyle\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=k[/inline], tada je [inline]\displaystyle\frac{4a-3b+c}{4A-3B+C}[/inline] jednako:
[inline]\text{A)}[/inline] [inline]2k[/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]k[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{2k}{3}[/inline];      [inline]\text{D)}[/inline] [inline]-2k[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{k}{2}[/inline];              [inline]\text{N)}[/inline] Ne znam.

6.Link zadatka Neka su [inline]\alpha[/inline], [inline]\beta[/inline] i [inline]\gamma[/inline] uglovi a [inline]a[/inline], [inline]b[/inline], [inline]c[/inline] stranice trougla. Tada je [inline]a\sin(\beta-\gamma)+b\sin(\gamma-\alpha)+c\sin(\alpha-\beta)[/inline] jednako:
[inline]\text{A)}[/inline] [inline]2\cos(\alpha+\beta-\gamma)[/inline];      [inline]\text{B)}[/inline] [inline]\cos(\alpha-\beta-\gamma)[/inline];      [inline]\text{C)}[/inline] [inline]1[/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline]0[/inline];      [inline]\text{E)}[/inline] [inline]-1[/inline];              [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK

7.Link zadatka Ako su [inline]x_1[/inline] i [inline]x_2[/inline] rešenja jednačine [inline]ax^2+bx+c=0[/inline], tada su [inline]x_1^3[/inline] i [inline]x_2^3[/inline] rešenja jednačine:
[inline]\text{A)}[/inline] [inline]a^3x^2-b^3x+a^3+c^3=0[/inline];      [inline]\text{B)}[/inline] [inline]a^3x^2+b^3x+c^3+1=0[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]a^3x^2+b\left(b^2-3ac\right)x+c^3=0[/inline];      [inline]\text{D)}[/inline] [inline]a^3x^2+\left(b^3-4abc\right)x+c^3=0[/inline];      [inline]\text{E)}[/inline] [inline]x^2+\left(a^3+b^3\right)x+a^3+b^3+c^3=0[/inline];              [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK

8.Link zadatka Ako je [inline]\log_{b^2}x+\log_{x^2}b=1[/inline], [inline]b>0[/inline], [inline]b\ne1[/inline], [inline]x\ne1[/inline], tada je [inline]x[/inline] jednako:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{1}{b}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{1}{b^2}[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]b[/inline];      [inline]\text{D)}[/inline] [inline]b^2[/inline];      [inline]\text{E)}[/inline] [inline]\sqrt b[/inline];              [inline]\text{N)}[/inline] Ne znam.

9.Link zadatka Stranica romba čija je površina [inline]80\text{ cm}^2[/inline], a odnos dijagonala [inline]4:5[/inline], iznosi (u [inline]\text{cm}[/inline]):
[inline]\text{A)}[/inline] [inline]\sqrt{84}[/inline];      [inline]\text{B)}[/inline] [inline]\sqrt{81}[/inline];      [inline]\text{C)}[/inline] [inline]\sqrt{72}[/inline];      [inline]\text{D)}[/inline] [inline]\sqrt{80}[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]\sqrt{82}[/inline];              [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK

10.Link zadatka Ako je [inline]\displaystyle\cos2x=\frac{1}{2}[/inline] pri čemu je [inline]0\lt x\lt\pi[/inline], tada je [inline]\sin7x[/inline] jednako:
[inline]\text{A)}[/inline] [inline]0[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{\sqrt3}{2}[/inline];      [inline]\text{C)}[/inline] [inline]1[/inline];      [inline]\text{D)}[/inline] [inline]-1[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]\displaystyle-\frac{1}{2}[/inline];              [inline]\text{N)}[/inline] Ne znam.

11.Link zadatka Nejednačina [inline]\displaystyle\sqrt{\frac{1}{x+1}}>\frac{1}{2x-1}[/inline] je tačna ako i samo ako je:
[inline]\enclose{circle}{\text{A)}}[/inline] [inline]\displaystyle x\in\left(-1,\frac{1}{2}\right)\cup\left(\frac{5}{4},+\infty\right)[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle x\in\left(\frac{5}{4},+\infty\right)[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle x\in\left(-1,\frac{1}{2}\right)[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle x\in\left(\frac{4}{5},+\infty\right)[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle x\in\left(0,\frac{4}{5}\right)[/inline];              [inline]\text{N)}[/inline] Ne znam.

12.Link zadatka Data je funkcija [inline]f(x)=2x-x^2[/inline]. Tada je [inline]f\Bigl(f\bigl(f(1-x)\bigr)\Bigr)[/inline] jednako:
[inline]\text{A)}[/inline] [inline]2x^4-x^8[/inline];      [inline]\text{B)}[/inline] [inline]2x-x^{16}[/inline];      [inline]\text{C)}[/inline] [inline]1-(1-x)^8[/inline];      [inline]\text{D)}[/inline] [inline]2x^3-x^8[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]1-x^8[/inline];              [inline]\text{N)}[/inline] Ne znam.

13.Link zadatka Sistem jednačina [inline]3^x-2^{y^2}=77[/inline], [inline]3^\frac{x}{2}-2^\frac{y^2}{2}=7[/inline] ima:
[inline]\text{A)}[/inline] jedno realno rešenje;      [inline]\enclose{circle}{\text{B)}}[/inline] dva realna rešenja;      [inline]\text{C)}[/inline] četiri realna rešenja;      [inline]\text{D)}[/inline] tri realna rešenja;      [inline]\text{E)}[/inline] prazan skup realnih rešenja;              [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temama: LINK1 LINK2

14.Link zadatka U jednakokraki trougao osnovice dužine [inline]12\text{ cm}[/inline] i odgovarajuće visine dužine [inline]8\text{ cm}[/inline], upisan je pravougaonik maksimalne površine tako da mu jedna stranica pripada osnovici trougla. Obim pravougaonika (u [inline]\text{cm}[/inline]) je:
[inline]\enclose{circle}{\text{A)}}[/inline] [inline]20[/inline];      [inline]\text{B)}[/inline] [inline]16[/inline];      [inline]\text{C)}[/inline] [inline]14[/inline];      [inline]\text{D)}[/inline] [inline]24[/inline];      [inline]\text{E)}[/inline] [inline]10[/inline];              [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK

15.Link zadatka Poluprečnik kruga koji sadrži tačke [inline](-2,0)[/inline] i [inline](1,-3)[/inline] a centar mu pripada pravoj [inline]x+y=0[/inline], jeste:
[inline]\text{A)}[/inline] [inline]\sqrt{13}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{\sqrt{13}}{2}[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]\displaystyle\sqrt{\frac{13}{2}}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{13}{2}[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\sqrt{\frac{13}{6}}[/inline];              [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK

16.Link zadatka U razvoju stepena binoma [inline]\displaystyle\left(\sqrt x-\frac{1}{\sqrt[3]x}\right)^8[/inline] jedan član je [inline]a\cdot x^{-\frac{1}{6}}[/inline]. Tada je [inline]a[/inline] jednako:
[inline]\text{A)}[/inline] [inline]0[/inline];      [inline]\text{B)}[/inline] [inline]56[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]-56[/inline];      [inline]\text{D)}[/inline] [inline]-70[/inline];      [inline]\text{E)}[/inline] [inline]70[/inline];              [inline]\text{N)}[/inline] Ne znam.

17.Link zadatka Dati su izrazi [inline]\displaystyle E_1=\sin^2\frac{x+y}{2}+\cos x\cos y[/inline], [inline]\displaystyle E_2=\cos^2\frac{x-y}{2}-\sin x\sin y[/inline], [inline]\displaystyle E_3=\cos^2\frac{x+y}{2}+\sin x\sin y[/inline], [inline]\displaystyle E_4=\sin^2\frac{x-y}{2}+\cos x\cos y[/inline]. Tačan je iskaz:
[inline]\text{A)}[/inline] [inline]E_1\ne E_2,\; E_3=E_4[/inline];      [inline]\text{B)}[/inline] [inline]E_1=E_2,\;E_3\ne E_4[/inline];      [inline]\text{C)}[/inline] Među datim izrazima nema međusobno jednakih;      [inline]\text{D)}[/inline] [inline]E_1=E_2,\;E_3=E_4[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]E_1=E_3,\;E_2=E_4[/inline];              [inline]\text{N)}[/inline] Ne znam.

18.Link zadatka Date su dve paralelne prave. Na jednoj od njih je [inline]10[/inline] a na drugoj [inline]12[/inline] različitih tačaka. Broj trouglova koje određuju ove tačke je:
[inline]\enclose{circle}{\text{A)}}[/inline] [inline]\displaystyle{10\choose2}{12\choose1}+{10\choose1}{12\choose2}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle{22\choose3}-{22\choose2}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle{10\choose1}{12\choose2}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle{10\choose2}{12\choose1}[/inline];      [inline]\text{E)}[/inline] [inline]10\cdot9\cdot12\cdot11[/inline];              [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK

19.Link zadatka Neka je [inline]S[/inline] skup svih realnih brojeva [inline]x[/inline] za koje važi [inline]2\log_{\cos x}\sin x\le\log_{\sin x}\text{ctg }x[/inline] ([inline]0\lt x\lt\pi[/inline]). Tada je za neke brojeve [inline]a,b,c,d,e,f[/inline] ([inline]a\lt b\lt c\lt d\lt e\lt f[/inline]), skup [inline]S[/inline] oblika:
[inline]\enclose{circle}{\text{A)}}[/inline] [inline](a,b)[/inline];      [inline]\text{B)}[/inline] [inline][a,b]\cup[c,d][/inline];      [inline]\text{C)}[/inline] [inline](a,b)\cup(c,d)[/inline];      [inline]\text{D)}[/inline] [inline][a,b][/inline];      [inline]\text{E)}[/inline] [inline](a,b)\cup(c,d)\cup(e,f)[/inline];              [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK

20.Link zadatka Ako su [inline]a[/inline], [inline]b[/inline] i [inline]c[/inline] istovremeno peti, sedamnaesti i trideset sedmi član i aritmetičke i geometrijske progresije, tada je [inline]a^{b-c}\cdot b^{c-a}\cdot c^{a-b}[/inline] jednako:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{1}{3}[/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]1[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{1}{2}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{1}{4}[/inline];      [inline]\text{E)}[/inline] [inline]2[/inline];              [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK


Izvor:
http://prijemni.etf.bg.ac.rs/resenja/2004/mat1.gif
http://prijemni.etf.bg.ac.rs/resenja/2004/mat2.gif


Napomena: Ukoliko vam treba pomoć oko rešavanja nekog od zadataka koji dosad nije obrađivan ni na jednoj temi, slobodno zatražite pomoć na forumu „Matemanija“, naravno uz poštovanje forumskih pravila.