ETF MATF FON GRF FORUM

Klasifikacioni ispit na Elektrotehničkom i Fizičkom fakultetu u Beogradu

28. jun 2006.


Test ima [inline]20[/inline] zadataka na [inline]2[/inline] stranice. Zadaci [inline]1–2[/inline] vrede po [inline]3[/inline] poena, zadaci [inline]3–7[/inline] vrede po [inline]4[/inline] poena, zadaci [inline]8–13[/inline] vrede po [inline]5[/inline] poena, zadaci [inline]14–18[/inline] vrede po [inline]6[/inline] poena i zadaci [inline]19–20[/inline] po [inline]7[/inline] poena. Pogrešan odgovor donosi [inline]−10\%[/inline] od broja poena predviđenih za tačan odgovor. Zaokruživanje [inline]N[/inline] ne donosi ni pozitivne ni negativne poene. U slučaju zaokruživanja više od jednog odgovora, kao i nezaokruživanja nijednog odgovora, dobija se [inline]−1[/inline] poen.

1.Link zadatka Vrednost izraza [inline]\left(\sqrt2+\sqrt4+\sqrt8+\sqrt{16}\right)\cdot\left(1-2^{-1/2}\right)[/inline] jednaka je:
[inline]\text{(A)}[/inline] [inline]1[/inline]      [inline]\text{(B)}[/inline] [inline]\sqrt2[/inline]      [inline]\enclose{box}{\text{(C)}}[/inline] [inline]3[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{1}{\sqrt2}[/inline]      [inline]\text{(E)}[/inline] [inline]2+\sqrt2[/inline]              [inline]\text{(N)}[/inline] Ne znam

2.Link zadatka Jednačina prave koja je normalna na pravu [inline]2x+3y+5=0[/inline] ima koeficijent pravca:
[inline]\enclose{box}{\text{(A)}}[/inline] [inline]\displaystyle\frac{3}{2}[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle-\frac{3}{2}[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{2}{3}[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle-\frac{2}{3}[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{1}{2}[/inline]              [inline]\text{(N)}[/inline] Ne znam

3.Link zadatka Ako je [inline]\displaystyle\frac{0.0015\cdot10^m}{0.03\cdot10^k}=5\cdot10^7[/inline] tada je razlika [inline]m-k[/inline] jednaka:
[inline]\enclose{box}{\text{(A)}}[/inline] [inline]9[/inline]      [inline]\text{(B)}[/inline] [inline]8[/inline]      [inline]\text{(C)}[/inline] [inline]7[/inline]      [inline]\text{(D)}[/inline] [inline]6[/inline]      [inline]\text{(E)}[/inline] [inline]5[/inline]              [inline]\text{(N)}[/inline] Ne znam

4.Link zadatka Vrednost izraza [inline]\displaystyle\frac{\left(1-i^{2006}\right)^{2007}}{\left(1+i^{2008}\right)^{2009}}[/inline], ([inline]i^2=-1[/inline]) iznosi:
[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{i}{2}[/inline]      [inline]\enclose{box}{\text{(B)}}[/inline] [inline]\displaystyle\frac{1}{4}[/inline]      [inline]\text{(C)}[/inline] [inline]4[/inline]      [inline]\text{(D)}[/inline] [inline]i[/inline]      [inline]\text{(E)}[/inline] [inline]-i[/inline]              [inline]\text{(N)}[/inline] Ne znam

5.Link zadatka Ako je [inline]\displaystyle\left(b-3\right)\left(4+\frac{2}{b}\right)=0[/inline] i [inline]b\ne3[/inline], tada je [inline]b[/inline] jednako:
[inline]\text{(A)}[/inline] [inline]-8[/inline]      [inline]\text{(B)}[/inline] [inline]-2[/inline]      [inline]\enclose{box}{\text{(C)}}[/inline] [inline]\displaystyle-\frac{1}{2}[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{1}{2}[/inline]      [inline]\text{(E)}[/inline] [inline]2[/inline]              [inline]\text{(N)}[/inline] Ne znam

6.Link zadatka Funkcije [inline]f[/inline] i [inline]g[/inline] zadate su sa [inline]\displaystyle g\bigl(f\left(x\right)\bigr)=\frac{x}{2}[/inline] i [inline]g\left(x\right)=\log_{16}x[/inline]. Tada je [inline]\displaystyle f\left(-1\right)+f\left(-\frac{3}{2}\right)[/inline] jednako:
[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{3}{2}[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{7}{4}[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{5}{8}[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{5}{2}[/inline]      [inline]\enclose{box}{\text{(E)}}[/inline] [inline]\displaystyle\frac{3}{8}[/inline]              [inline]\text{(N)}[/inline] Ne znam

7.Link zadatka Ako su [inline]x_1[/inline] i [inline]x_2[/inline] rešenja jednačine [inline]\displaystyle\frac{1}{x-a}+\frac{1}{x+a}=\frac{1}{a}[/inline] ([inline]a\ne0[/inline]), tada su [inline]\displaystyle\frac{1}{x_1^2}[/inline] i [inline]\displaystyle\frac{1}{x_2^2}[/inline] rešenja jednačine:
[inline]\enclose{box}{\text{(A)}}[/inline] [inline]a^4x^2-6a^2x+1=0[/inline]      [inline]\text{(B)}[/inline] [inline]a^3x^2+6ax+1=0[/inline]      [inline]\text{(C)}[/inline] [inline]a^4x^2+6a^2x+1=0[/inline]      [inline]\text{(D)}[/inline] [inline]a^3x^2-6ax+1=0[/inline]      [inline]\text{(E)}[/inline] [inline]x^2+6a^3x+a^4=0[/inline]              [inline]\text{(N)}[/inline] Ne znam

8.Link zadatka Osnovica jednakokrakog trougla je [inline]6\text{ cm}[/inline] a krak [inline]12\text{ cm}[/inline]. Poluprečnik opisanog kruga oko trougla iznosi (u [inline]\text{cm}[/inline]):
[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{7}{5}\sqrt{15}[/inline]      [inline]\text{(B)}[/inline] [inline]4\sqrt{13}[/inline]      [inline]\text{(C)}[/inline] [inline]3\sqrt{15}[/inline]      [inline]\text{(D)}[/inline] [inline]6\sqrt{13}[/inline]      [inline]\enclose{box}{\text{(E)}}[/inline] [inline]\displaystyle\frac{8}{5}\sqrt{15}[/inline]              [inline]\text{(N)}[/inline] Ne znam
Obrađeno u temi: LINK

9.Link zadatka Ako je [inline]\displaystyle\cos2\alpha=-\frac{63}{65}[/inline], [inline]\displaystyle0<\alpha<\frac{\pi}{2}[/inline] i [inline]\displaystyle\cos\beta=\frac{7}{\sqrt{130}}[/inline], [inline]\displaystyle0<\beta<\frac{\pi}{2}[/inline], tada je [inline]\alpha+\beta[/inline] jednako:
[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{\pi}{4}[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{\pi}{3}[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{\pi}{2}[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{2\pi}{3}[/inline]      [inline]\enclose{box}{\text{(E)}}[/inline] [inline]\displaystyle\frac{3\pi}{4}[/inline]              [inline]\text{(N)}[/inline] Ne znam
Obrađeno u temi: LINK

10.Link zadatka Koja od sledećih nejednakosti je tačna za svako [inline]x\in\left(0,1\right)\quad[/inline] [inline]\left(\text{I}\right)\;x^5<x^3[/inline], [inline]\left(\text{II}\right)\;x^4+x^5<x^3+x^2[/inline], [inline]\left(\text{III}\right)\;x^4-x^5<x^2-x^3[/inline]:
[inline]\text{(A)}[/inline] Nijedna      [inline]\text{(B)}[/inline] samo [inline]\left(\text{I}\right)[/inline]      [inline]\text{(C)}[/inline] samo [inline]\left(\text{II}\right)[/inline]      [inline]\text{(D)}[/inline] samo [inline]\left(\text{I}\right)[/inline] i [inline]\left(\text{II}\right)[/inline]      [inline]\enclose{box}{\text{(E)}}[/inline] [inline]\left(\text{I}\right)[/inline], [inline]\left(\text{II}\right)[/inline] i [inline]\left(\text{III}\right)[/inline]              [inline]\text{(N)}[/inline] Ne znam

11.Link zadatka U razvoju binoma [inline]\left(\sqrt{1+x}-\sqrt{1-x}\right)^n[/inline] ([inline]n\in\mathbb{N}[/inline]) koeficijent trećeg člana je [inline]28[/inline]. Srednji član razvoja je:
[inline]\enclose{box}{\text{(A)}}[/inline] [inline]70\left(1-x^2\right)^2[/inline]      [inline]\text{(B)}[/inline] [inline]-70\left(1-x^2\right)^2[/inline]      [inline]\text{(C)}[/inline] [inline]28\left(1-x\right)\left(1+x\right)^3[/inline]      [inline]\text{(D)}[/inline] [inline]-28\left(1-x\right)\left(1+x\right)^3[/inline]      [inline]\text{(E)}[/inline] [inline]56\left(1+x\right)^{\frac{5}{2}}\left(1-x\right)^{\frac{3}{2}}[/inline]              [inline]\text{(N)}[/inline] Ne znam

12.Link zadatka U trouglu čije su stranice [inline]a[/inline], [inline]b[/inline], [inline]c[/inline] i važi jednakost [inline]\left(a+b+c\right)\left(a+b-c\right)=3ab[/inline], ugao naspram stranice [inline]c[/inline] iznosi:
[inline]\text{(A)}[/inline] [inline]15^\circ[/inline]      [inline]\text{(B)}[/inline] [inline]30^\circ[/inline]      [inline]\text{(C)}[/inline] [inline]45^\circ[/inline]      [inline]\enclose{box}{\text{(D)}}[/inline] [inline]60^\circ[/inline]      [inline]\text{(E)}[/inline] [inline]150^\circ[/inline]              [inline]\text{(N)}[/inline] Ne znam
Obrađeno u temi: LINK

13.Link zadatka Ukupan broj rešenja sistema jednačina [inline]x+xy+y=11[/inline], [inline]x^2y+y^2x=30[/inline] je:
[inline]\text{(A)}[/inline] [inline]1[/inline]      [inline]\text{(B)}[/inline] [inline]2[/inline]      [inline]\enclose{box}{\text{(C)}}[/inline] [inline]4[/inline]      [inline]\text{(D)}[/inline] [inline]3[/inline]      [inline]\text{(E)}[/inline] [inline]0[/inline]              [inline]\text{(N)}[/inline] Ne znam

14.Link zadatka Ako je [inline]\alpha[/inline] oštar ugao između prostornih dijagonala kocke, tada je [inline]\text{tg }\alpha[/inline] jednak:
[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{\sqrt2}{2}[/inline]      [inline]\text{(B)}[/inline] [inline]\sqrt2[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{\sqrt2}{4}[/inline]      [inline]\enclose{box}{\text{(D)}}[/inline] [inline]2\sqrt2[/inline]      [inline]\text{(E)}[/inline] [inline]3\sqrt2[/inline]              [inline]\text{(N)}[/inline] Ne znam
Obrađeno u temi: LINK

15.Link zadatka Zbir rešenja jednačine [inline]\sqrt3\sin x+\cos x=\sqrt3[/inline], koja pripadaju intervalu [inline]\left(0,2\pi\right)[/inline] je:
[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{\pi}{2}[/inline]      [inline]\text{(B)}[/inline] [inline]0[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{\pi}{3}[/inline]      [inline]\enclose{box}{\text{(D)}}[/inline] [inline]\displaystyle\frac{2\pi}{3}[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{\pi}{6}[/inline]              [inline]\text{(N)}[/inline] Ne znam

16.Link zadatka Zbir prva tri člana rastućeg geometrijskog niza je [inline]91[/inline]. Ako tim članovima dodamo redom [inline]25[/inline], [inline]27[/inline] i [inline]1[/inline] dobijamo tri broja koja obrazuju aritmetički niz. Sedmi član datog geometrijskog niza je:
[inline]\text{(A)}[/inline] [inline]567[/inline]      [inline]\text{(B)}[/inline] [inline]1701[/inline]      [inline]\enclose{box}{\text{(C)}}[/inline] [inline]5103[/inline]      [inline]\text{(D)}[/inline] [inline]5706[/inline]      [inline]\text{(E)}[/inline] [inline]5063[/inline]              [inline]\text{(N)}[/inline] Ne znam

17.Link zadatka Zbir svih rešenja jednačine [inline]2\log_4^2\left|x+1\right|+\log_4\left|x^2-1\right|+\log_{\frac{1}{4}}\left|x-1\right|=0[/inline] je:
[inline]\text{(A)}[/inline] [inline]1[/inline]      [inline]\text{(B)}[/inline] [inline]-2[/inline]      [inline]\enclose{box}{\text{(C)}}[/inline] [inline]-4[/inline]      [inline]\text{(D)}[/inline] [inline]4[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle-\frac{1}{2}[/inline]              [inline]\text{(N)}[/inline] Ne znam
Obrađeno u temi: LINK

18.Link zadatka Ostatak pri deljenju polinoma [inline]P\left(x\right)[/inline] (stepena [inline]n\ge2[/inline]) sa [inline]x-1[/inline] je [inline]1[/inline], a ostatak pri deljenju polinoma [inline]P\left(x\right)[/inline] sa [inline]x+1[/inline] je [inline]-1[/inline]. Ostatak pri deljenju polinoma [inline]P\left(x\right)[/inline] sa [inline]x^2-1[/inline] je:
[inline]\enclose{box}{\text{(A)}}[/inline] [inline]x[/inline]      [inline]\text{(B)}[/inline] [inline]x+2[/inline]      [inline]\text{(C)}[/inline] [inline]1-x[/inline]      [inline]\text{(D)}[/inline] [inline]x+3[/inline]      [inline]\text{(E)}[/inline] [inline]2-x[/inline]              [inline]\text{(N)}[/inline] Ne znam

19.Link zadatka Najmanja vrednost rastojanja tačke [inline]M\left(0,-2\right)[/inline] od tačaka [inline]\left(x,y\right)[/inline] takvih da je [inline]\displaystyle y=\frac{16}{\sqrt3x^3}-2[/inline], za [inline]x>0[/inline], iznosi:
[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{4}{\sqrt2}[/inline]      [inline]\enclose{box}{\text{(B)}}[/inline] [inline]\displaystyle\frac{4}{\sqrt3}[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{16}{\sqrt3}[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{1}{\sqrt3}[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{2}{\sqrt3}[/inline]              [inline]\text{(N)}[/inline] Ne znam
Obrađeno u temi: LINK

20.Link zadatka Skup svih vrednosti [inline]x[/inline] za koje važi nejednakost [inline]\displaystyle\frac{20-8^{2\sqrt x+1}-64^{2\sqrt x}}{\left(2^x-1\right)\left(2^x-4\right)}>0[/inline] je oblika (za neke realne brojeve [inline]a[/inline] i [inline]b[/inline] takve da je [inline]0<a<b<+\infty[/inline]):
[inline]\text{(A)}[/inline] [inline]\left(0,a\right)[/inline]      [inline]\enclose{box}{\text{(B)}}[/inline] [inline]\left(a,b\right)[/inline]      [inline]\text{(C)}[/inline] [inline]\left(0,a\right)\cup\left(b,+\infty\right)[/inline]      [inline]\text{(D)}[/inline] [inline]\left(a,+\infty\right)[/inline]      [inline]\text{(E)}[/inline] [inline]\left(0,a\right)\setminus\left\{1\right\}[/inline]              [inline]\text{(N)}[/inline] Ne znam
Obrađeno u temi: LINK


Izvor: http://prijemni.etf.bg.ac.rs/resenja/2006/matematika.pdf


Napomena: Ukoliko vam treba pomoć oko rešavanja nekog od zadataka koji dosad nije obrađivan ni na jednoj temi, slobodno zatražite pomoć na forumu „Matemanija“, naravno uz poštovanje forumskih pravila.