ETF MATF FON FORUM

Prijemni ispit na Fakultetu organizacionih nauka u Beogradu

27. jun 2017.


Test ima [inline]20[/inline] zadataka na [inline]2[/inline] stranice. Svi zadaci se vrednuju sa po [inline]5[/inline] poena. Ukoliko ne želite da se opredelite za jedan od prvih pet ponuđenih odgovora možete da zaokružite „N“, što se vrednuje sa [inline]0[/inline] poena. Za pogrešan odgovor se oduzima [inline]0.5[/inline] poena. Ako se, za konkretan zadatak, zaokruži više od jednog, ili ne zaokruži ni jedan odgovor, kao i ako se na bilo koji način nepravilno označi odgovor, oduzima se [inline]1[/inline] poen.

1.Link zadatka Vrednost izraza [inline]\displaystyle\frac{\left(2+\sqrt3\right)\cdot64^{(-2)^{-2}}\cdot\sqrt[3]{(-1)^3}}{\left(2-\sqrt3\right)^{-1}\cdot64^{-2^{-2}}\cdot\sqrt[4]{(-8)^4}}[/inline] je:
[inline]\text{A)}[/inline] [inline]1[/inline];      [inline]\text{B)}[/inline] [inline]4[/inline];      [inline]\text{C)}[/inline] [inline]8[/inline];      [inline]\text{D)}[/inline] [inline]2+\sqrt3[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]-1[/inline];              [inline]\text{N)}[/inline] Ne znam.

2.Link zadatka Ako se dužina jedne ivice kvadra poveća za [inline]20\%[/inline], dužina druge ivice smanji za [inline]20\%[/inline] i dužina treće ivice ostane nepromenjena, onda se zapremina kvadra:
[inline]\text{A)}[/inline] ne menja;      [inline]\text{B)}[/inline] poveća za [inline]5\%[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] smanji za [inline]4\%[/inline];      [inline]\text{D)}[/inline] poveća za [inline]4\%[/inline];      [inline]\text{E)}[/inline] smanji za [inline]10\%[/inline];              [inline]\text{N)}[/inline] Ne znam.

3.Link zadatka Vrednost izraza [inline]2^{\log_{0.25}\left(\log_42^{\frac{2}{3}}\right)}[/inline] je:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{1}{3}[/inline];      [inline]\text{B)}[/inline] [inline]1[/inline];      [inline]\text{C)}[/inline] [inline]3[/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline]\sqrt3[/inline];      [inline]\text{E)}[/inline] [inline]\sqrt[3]2[/inline];              [inline]\text{N)}[/inline] Ne znam.

4.Link zadatka Ako su [inline]a[/inline], [inline]b[/inline] i [inline]c[/inline] realni brojevi takvi da je [inline]b\gt a[/inline] i [inline]a+b\ne c[/inline], onda je izraz [inline]\displaystyle\frac{\sqrt{(a-b)^2}}{\sqrt[3]{(a-b)^3}}\cdot\frac{a^2-b^2-c^2+2bc}{a+b-c}[/inline] identički jednak izrazu:
[inline]\text{A)}[/inline] [inline]a+b+c[/inline];      [inline]\text{B)}[/inline] [inline](a-b)(a-b-c)[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]-a+b-c[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{b+c-a}{a-b}[/inline];      [inline]\text{E)}[/inline] [inline]a-b+c[/inline];              [inline]\text{N)}[/inline] Ne znam.

5.Link zadatka Neka su [inline]a[/inline], [inline]b[/inline] i [inline]c[/inline] vrednosti za koje je polinom [inline]P(x)=x^{2017}+ax^{2014}+bx^{1001}+c[/inline] deljiv polinomom [inline]x^2+1[/inline], a pri deljenju sa polinomom [inline]x-1[/inline] daje ostatak [inline]4[/inline]. Tada je [inline]a^3+b^3+c^3[/inline] jednako:
[inline]\enclose{circle}{\text{A)}}[/inline] [inline]15[/inline];      [inline]\text{B)}[/inline] [inline]12[/inline];      [inline]\text{C)}[/inline] [inline]9[/inline];      [inline]\text{D)}[/inline] [inline]17[/inline];      [inline]\text{E)}[/inline] [inline]3[/inline];              [inline]\text{N)}[/inline] Ne znam.

6.Link zadatka Ako je [inline]n[/inline] prirodan broj, [inline]\displaystyle f(n)=\left(\frac{1+i}{\sqrt2}\right)^n+\left(\frac{1-i}{\sqrt2}\right)^n[/inline] i [inline]i^2=-1[/inline], onda je [inline]f(2017)+f(2013)[/inline]:
[inline]\text{A)}[/inline] [inline]\sqrt2[/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]0[/inline];      [inline]\text{C)}[/inline] [inline]4i[/inline];      [inline]\text{D)}[/inline] [inline]-2\sqrt2[/inline];      [inline]\text{E)}[/inline] [inline]2\sqrt2[/inline];              [inline]\text{N)}[/inline] Ne znam.

7.Link zadatka Date su realne funkcije [inline]f_1(x)=\log_3\left(x^2-10x+21\right)[/inline], [inline]\displaystyle f_2(x)=\frac{1}{\sqrt[4]{10x-x^2}}[/inline] i [inline]\displaystyle f_3(x)=\frac{\log_4\left(x^2+3\right)}{\sqrt{4-x}}[/inline]. Ako su [inline]D_{f_1}[/inline], [inline]D_{f_2}[/inline] i [inline]D_{f_3}[/inline] redom domeni funkcija [inline]f_1[/inline], [inline]f_2[/inline] i [inline]f_3[/inline], onda je tačno tvrđenje:
[inline]\text{A)}[/inline] [inline]D_{f_1}\cup D_{f_2}\cup D_{f_3}=(-\infty,7)[/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]D_{f_1}\cap D_{f_2}\cap D_{f_3}=(0,3)[/inline];      [inline]\text{C)}[/inline] [inline](D_{f_1}\cup D_{f_2})\cap D_{f_3}=(0,4)[/inline];      [inline]\text{D)}[/inline] [inline]D_{f_1}\cap D_{f_2}\cap D_{f_3}=(0,4)[/inline];      [inline]\text{E)}[/inline] [inline](D_{f_1}\cup D_{f_2})\cap D_{f_3}=(-\infty,4][/inline];              [inline]\text{N)}[/inline] Ne znam.

8.Link zadatka Proizvod svih realnih rešenja jednačine [inline]\log_2(x+4)=\log_{4x+16}8[/inline] jednak je:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{31}{2}[/inline];      [inline]\text{B)}[/inline] [inline]15[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle-\frac{31}{2}[/inline];      [inline]\text{D)}[/inline] [inline]-15[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]\displaystyle\frac{31}{4}[/inline];              [inline]\text{N)}[/inline] Ne znam.

9.Link zadatka Ako je [inline]\displaystyle a\in(-\infty,+\infty)\setminus\left\{-\frac{1}{2}\right\}[/inline], onda su rešenja kvadratne jednačine [inline]x^2-(a+2)x+2a+1=0[/inline] različita i istog znaka ako i samo ako:
[inline]\text{A)}[/inline] [inline]\displaystyle a\in\left(-\infty,-\frac{1}{2}\right)\cup\left(-\frac{1}{2},+\infty\right)[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle a\in\left(-\frac{1}{2},+\infty\right)[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]\displaystyle a\in\left(-\frac{1}{2},0\right)\cup(4,+\infty)[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle a\in\left(-\frac{1}{2},0\right)\cup[4,+\infty)[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle a\in\left(-\infty,-\frac{1}{2}\right)\cup(4,+\infty)[/inline];              [inline]\text{N)}[/inline] Ne znam.

10.Link zadatka Skup svih realnih rešenja nejednačine [inline]\sqrt{4-4^x}\gt2-2^x[/inline] je:
[inline]\text{A)}[/inline] [inline](-\infty,1][/inline];      [inline]\text{B)}[/inline] [inline][-2,1)[/inline];      [inline]\text{C)}[/inline] [inline][0,1)[/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline](-\infty,1)[/inline];      [inline]\text{E)}[/inline] [inline][-1,1)[/inline];              [inline]\text{N)}[/inline] Ne znam.

11.Link zadatka Proizvod svih realnih rešenja jednačine [inline]2x^2\sqrt{1-x^2}+4\sqrt{1-x^2}=9x\sqrt{1-x^2}[/inline] je:
[inline]\text{A)}[/inline] [inline]1[/inline];      [inline]\text{B)}[/inline] [inline]2[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{1}{2}[/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline]\displaystyle-\frac{1}{2}[/inline];      [inline]\text{E)}[/inline] [inline]-2[/inline];              [inline]\text{N)}[/inline] Ne znam.

12.Link zadatka U trouglu je jedan unutrašnji ugao jednak razlici druga dva unutrašnja ugla. Odnos dveju kraćih stranica je [inline]3:4[/inline]. Ako je površina trougla [inline]24\text{ cm}^2[/inline], obim kruga opisanog oko tog trougla je:
[inline]\text{A)}[/inline] [inline]5\pi\text{ cm}[/inline];      [inline]\text{B)}[/inline] [inline]6\pi\text{ cm}[/inline];      [inline]\text{C)}[/inline] [inline]3\pi\text{ cm}[/inline];      [inline]\text{D)}[/inline] [inline]7\pi\text{ cm}[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]10\pi\text{ cm}[/inline];              [inline]\text{N)}[/inline] Ne znam.

13.Link zadatka Od [inline]12[/inline] knjiga [inline]4[/inline] su iz matematike. Broj različitih mogućnosti za kupovinu [inline]3[/inline] knjige tako da bar jedna bude iz matematike je:
[inline]\text{A)}[/inline] [inline]24[/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]164[/inline];      [inline]\text{C)}[/inline] [inline]56[/inline];      [inline]\text{D)}[/inline] [inline]984[/inline];      [inline]\text{E)}[/inline] [inline]220[/inline];              [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK

14.Link zadatka Prava [inline]p[/inline] koja sadrži jednu žižu hiperbole [inline]4x^2-5y^2=20[/inline] i normalna je na [inline]x[/inline]-osu seče hiperbolu u tačkama [inline]A[/inline] i [inline]B[/inline]. Obim trougla čija su temena tačke [inline]A[/inline], [inline]B[/inline] i žiža hiperbole koja ne pripada pravoj [inline]p[/inline] je:
[inline]\enclose{circle}{\text{A)}}[/inline] [inline]\displaystyle\frac{36}{\sqrt5}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{20}{\sqrt5}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{40}{\sqrt5}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{28}{\sqrt5}[/inline];      [inline]\text{E)}[/inline] [inline]18[/inline];              [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK

15.Link zadatka Ako je [inline]a_1,a_2,a_3,\ldots[/inline] opadajući geometrijski niz čiji je zbir prva tri člana [inline]28[/inline] i ako su [inline]a_1,a_2,a_3-4[/inline] prva tri člana nekog aritmetičkog niza, onda je zbir prva četiri člana tog aritmetičkog niza jednak:
[inline]\text{A)}[/inline] [inline]28[/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]16[/inline];      [inline]\text{C)}[/inline] [inline]-4[/inline];      [inline]\text{D)}[/inline] [inline]24[/inline];      [inline]\text{E)}[/inline] [inline]32[/inline];              [inline]\text{N)}[/inline] Ne znam.

16.Link zadatka Vrednost izraza [inline]\sin54^\circ\cos108^\circ[/inline] je:
[inline]\text{A)}[/inline] [inline]\displaystyle-\frac{1}{8}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle-\frac{\sqrt3}{4}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle-\frac{1}{2}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle-\frac{\sqrt2}{4}[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]\displaystyle-\frac{1}{4}[/inline];              [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK

17.Link zadatka Ako je zbir svih binomnih koeficijenata razvoja [inline]\displaystyle\left(\frac{1}{x}+2x\right)^n[/inline], [inline]x\ne0[/inline], jednak [inline]2^{12}[/inline], onda sabirak koji ne zavisi od [inline]x[/inline] iznosi:
[inline]\text{A)}[/inline] [inline]462[/inline];      [inline]\text{B)}[/inline] [inline]924[/inline];      [inline]\text{C)}[/inline] [inline]64[/inline];      [inline]\text{D)}[/inline] [inline]2^7\cdot231[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]2^8\cdot231[/inline];              [inline]\text{N)}[/inline] Ne znam.

18.Link zadatka Pravilna trostrana prizma zapremine [inline]54\text{ cm}^3[/inline] ima najmanji zbir dužina svih ivica ako je dužina stranice njene osnove jednaka:
[inline]\enclose{circle}{\text{A)}}[/inline] [inline]\displaystyle\frac{6}{\sqrt[6]3}\text{ cm}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{36}{\sqrt[6]2}\text{ cm}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{42}{\sqrt[6]3}\text{ cm}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{\sqrt[6]3}{2}\text{ cm}[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{\sqrt[6]2}{3}\text{ cm}[/inline];              [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK

19.Link zadatka Dužine osnovica trapeza su [inline]20\text{ cm}[/inline] i [inline]6\text{ cm}[/inline], a kraci su dužina [inline]13\text{ cm}[/inline] i [inline]15\text{ cm}[/inline]. Rotacijom trapeza oko duže osnovice nastaje telo čija je zapremina jednaka:
[inline]\text{A)}[/inline] [inline]1440\pi\text{ cm}^3[/inline];      [inline]\text{B)}[/inline] [inline]1560\pi\text{ cm}^3[/inline];      [inline]\text{C)}[/inline] [inline]1600\pi\text{ cm}^3[/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline]1536\pi\text{ cm}^3[/inline];      [inline]\text{E)}[/inline] [inline]1920\pi\text{ cm}^3[/inline];              [inline]\text{N)}[/inline] Ne znam.

20.Link zadatka Zbir svih rešenja jednačine [inline]\sin x+\sin2x+1=\cos x+2\cos^2x[/inline] koja pripadaju intervalu [inline](-\pi,\pi)[/inline] jednak je:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{\pi}{3}[/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]\displaystyle\frac{\pi}{2}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{3\pi}{2}[/inline];      [inline]\text{D)}[/inline] [inline]-\pi[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle-\frac{\pi}{2}[/inline];              [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK


Izvor: http://upis.fon.rs/vesti/2017/fon_prijemni_rez_m_2017.pdf


Napomena: Ukoliko vam treba pomoć oko rešavanja nekog od zadataka koji dosad nije obrađivan ni na jednoj temi, slobodno zatražite pomoć na forumu „Matemanija“, naravno uz poštovanje forumskih pravila.