ETF MATF FON GRF FORUM

Probni prijemni ispit na Fakultetu organizacionih nauka u Beogradu

21. jun 2018.


Test ima [inline]20[/inline] zadataka na [inline]2[/inline] stranice. Svi zadaci se vrednuju sa po [inline]5[/inline] poena. Ukoliko ne želite da se opredelite za jedan od prvih pet ponuđenih odgovora možete da zaokružite „N“, što se vrednuje sa [inline]0[/inline] poena. Za pogrešan odgovor se oduzima [inline]0,5[/inline] poena. Ako se, za konkretan zadatak, označi više od jednog, ili ne označi ni jedan odgovor, kao i ako se na bilo koji način nepravilno označi odgovor, oduzima se [inline]1[/inline] poen.

1.Link zadatka U avgustu je prodato [inline]20\%[/inline] više malina nego u julu. Ako je u avgustu prodato [inline]17100\text{ t}[/inline] malina, onda je prodata količina malina u avgustu u odnosu na prodatu količinu malina u julu povećana za:
[inline]\text{A)}[/inline] [inline]2000\text{ t}[/inline];      [inline]\text{B)}[/inline] [inline]4275\text{ t}[/inline];      [inline]\text{C)}[/inline] [inline]14250\text{ t}[/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline]2850\text{ t}[/inline];      [inline]\text{E)}[/inline] [inline]11400\text{ t}[/inline];              [inline]\text{N)}[/inline] Ne znam.

2.Link zadatka Ako kompleksan broj [inline]z[/inline] zadovoljava jednačinu [inline]z^2+z\cdot\overline z-4\text{Re}(z)+2+4i=0[/inline], pri čemu je [inline]i^2=-1[/inline], onda [inline]i^{1008}\cdot\text{Re}(z)+i^{2018}\cdot\text{Im}(z)[/inline] iznosi:
[inline]\text{A)}[/inline] [inline]i-2[/inline];      [inline]\text{B)}[/inline] [inline]-1[/inline];      [inline]\text{C)}[/inline] [inline]1[/inline];      [inline]\text{D)}[/inline] [inline]1+2i[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]3[/inline];              [inline]\text{N)}[/inline] Ne znam.

3.Link zadatka Vrednost izraza [inline]\displaystyle\left(\frac{1}{\sqrt2-\sqrt3}+\frac{1}{\sqrt2+\sqrt3}\right)^{-1}\cdot(0.1)^{\log_{10}\left|3^{-2}-2^{-1}\cdot3^{-1}\right|}[/inline] je:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{9}{\sqrt3}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{18}{\sqrt2}[/inline];      [inline]\text{C)}[/inline] [inline]9\sqrt3[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{9}{\sqrt2}[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]\displaystyle-\frac{9}{\sqrt2}[/inline];              [inline]\text{N)}[/inline] Ne znam.

4.Link zadatka Izraz [inline]\displaystyle\frac{\left(\sqrt a-\sqrt b\right)^3+3a\sqrt b-3b\sqrt a}{\sqrt a-\sqrt b}-\frac{{\sqrt a}^3+{\sqrt b}^3}{a-b}:\frac{{\sqrt a}^3-{\sqrt b}^3}{\left(\sqrt a-\sqrt b\right)^2\cdot\left(a+\sqrt{ab}+b\right)}[/inline], gde su [inline]a[/inline] i [inline]b[/inline] međusobno različiti, pozitivni realni brojevi, identički je jednak izrazu:
[inline]\enclose{circle}{\text{A)}}[/inline] [inline]2\sqrt a\sqrt b[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{1}{\sqrt{ab}}[/inline];      [inline]\text{C)}[/inline] [inline]2a+2b[/inline];      [inline]\text{D)}[/inline] [inline]\sqrt a+\sqrt b[/inline];      [inline]\text{E)}[/inline] [inline]ab[/inline];              [inline]\text{N)}[/inline] Ne znam.

5.Link zadatka Broj svih celobrojnih rešenja nejednačine [inline]\displaystyle\left(\frac{1}{3}\log_2x\right)^{-1}+(\log_3x)^{-1}\ge2[/inline] je:
[inline]\text{A)}[/inline] [inline]5[/inline];      [inline]\text{B)}[/inline] [inline]6[/inline];      [inline]\text{C)}[/inline] [inline]2[/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline]3[/inline];      [inline]\text{E)}[/inline] [inline]4[/inline];              [inline]\text{N)}[/inline] Ne znam.

6.Link zadatka Ako je [inline]P(x)[/inline] polinom koji se dobija kao ostatak pri deljenju polinoma [inline]x^{2018}+x^{1999}+4[/inline] polinomom [inline]x^4-1[/inline], onda je [inline]P(6)[/inline] jednako:
[inline]\text{A)}[/inline] [inline]216[/inline];      [inline]\text{B)}[/inline] [inline]64[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]256[/inline];      [inline]\text{D)}[/inline] [inline]252[/inline];      [inline]\text{E)}[/inline] [inline]40[/inline];              [inline]\text{N)}[/inline] Ne znam.

7.Link zadatka Unija oblasti definisanosti realnih funkcija [inline]f_1(x)=\sqrt{1+\log_{0.5}x}[/inline] i [inline]\displaystyle f_2(x)=\frac{\sqrt{3+2x-x^2}}{\log_2x-1}[/inline] je:
[inline]\enclose{circle}{\text{A)}}[/inline] [inline](0,3][/inline];      [inline]\text{B)}[/inline] [inline](0,2)\cup(2,3][/inline];      [inline]\text{C)}[/inline] [inline](2,+\infty)[/inline];      [inline]\text{D)}[/inline] [inline](0,3)[/inline];      [inline]\text{E)}[/inline] [inline](0,+\infty)[/inline];              [inline]\text{N)}[/inline] Ne znam.

8.Link zadatka Ako je [inline]\displaystyle a=\frac{\log_281}{\log_{0.5}27}[/inline], [inline]b=4^\frac{\log_312}{\log_34}[/inline] i [inline]\displaystyle c=\log_2\log_2\sqrt{\sqrt[4]2}[/inline], onda je proizvod brojeva [inline]a[/inline], [inline]b[/inline] i [inline]c[/inline] jednak:
[inline]\text{A)}[/inline] [inline]24[/inline];      [inline]\text{B)}[/inline] [inline]-16[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{23}{3}[/inline];      [inline]\text{D)}[/inline] [inline]-48[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]48[/inline];              [inline]\text{N)}[/inline] Ne znam.

9.Link zadatka Broj svih celobrojnih rešenja nejednačine [inline](x+2)\sqrt{9-x^2}\ge0[/inline] je:
[inline]\text{A)}[/inline] [inline]8[/inline];      [inline]\text{B)}[/inline] [inline]4[/inline];      [inline]\text{C)}[/inline] [inline]6[/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline]7[/inline];      [inline]\text{E)}[/inline] [inline]5[/inline];              [inline]\text{N)}[/inline] Ne znam.

10.Link zadatka Dužine kateta pravouglog trougla [inline]ABC[/inline] su [inline]AB=3\text{ cm}[/inline] i [inline]AC=4\text{ cm}[/inline]. Ako je [inline]D[/inline] podnožje visine trougla iz temena [inline]A[/inline] i [inline]S[/inline] središte opisanog kruga trougla [inline]ABC[/inline], onda dužina duži [inline]SD[/inline] iznosi:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{2}{5}\text{ cm}[/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]\displaystyle\frac{7}{10}\text{ cm}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{3}{10}\text{ cm}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{7}{5}\text{ cm}[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{3}{4}\text{ cm}[/inline];              [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK

11.Link zadatka Zajednička osnova prave prizme i prave piramide je kvadrat. Ako bočna ivica piramide, čija je dužina [inline]2\text{ cm}[/inline], zaklapa ugao od [inline]45^\circ[/inline] sa osnovom i ako je zapremina prizme [inline]8\text{ cm}^3[/inline], onda je visina prizme jednaka:
[inline]\text{A)}[/inline] [inline]2\sqrt2\text{ cm}[/inline];      [inline]\text{B)}[/inline] [inline]4\text{ cm}[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]2\text{ cm}[/inline];      [inline]\text{D)}[/inline] [inline]4\sqrt2\text{ cm}[/inline];      [inline]\text{E)}[/inline] [inline]\sqrt2\text{ cm}[/inline];              [inline]\text{N)}[/inline] Ne znam.

12.Link zadatka Zbir najmanjeg i najvećeg celobrojnog rešenja nejednačine [inline]\displaystyle3^{72}\cdot\left(\frac{1}{3}\right)^x\cdot3^{-\sqrt x}>1[/inline] jednak je:
[inline]\text{A)}[/inline] [inline]17[/inline];      [inline]\text{B)}[/inline] [inline]0[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]63[/inline];      [inline]\text{D)}[/inline] [inline]64[/inline];      [inline]\text{E)}[/inline] [inline]81[/inline];              [inline]\text{N)}[/inline] Ne znam.

13.Link zadatka Vrednost izraza [inline]\displaystyle\sin^2\frac{5\pi}{12}+\cos^2\frac{3\pi}{8}[/inline] je:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{5+\sqrt3+\sqrt2}{4}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{5+\sqrt3-\sqrt2}{4}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{4+\sqrt3+\sqrt2}{8}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{4+\sqrt3-\sqrt2}{2}[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]\displaystyle\frac{4+\sqrt3-\sqrt2}{4}[/inline];              [inline]\text{N)}[/inline] Ne znam.

14.Link zadatka U aritmetičkom nizu [inline]a_1,a_2,\ldots[/inline] u kom je osmi član tri puta veći od trećeg člana i važi [inline]a_6=3a_2+4[/inline], zbir [inline]a_{21}+a_{22}+\cdots+a_{40}[/inline] iznosi:
[inline]\enclose{circle}{\text{A)}}[/inline] [inline]2400[/inline];      [inline]\text{B)}[/inline] [inline]3200[/inline];      [inline]\text{C)}[/inline] [inline]1600[/inline];      [inline]\text{D)}[/inline] [inline]2360[/inline];      [inline]\text{E)}[/inline] [inline]3560[/inline];              [inline]\text{N)}[/inline] Ne znam.

15.Link zadatka Najveće celobrojno rešenje nejednačine [inline]\displaystyle\frac{x}{x-1}-\frac{2}{x+1}-\frac{8}{x^2-1}\lt0[/inline] pripada skupu:
[inline]\text{A)}[/inline] [inline][-1,0)[/inline];      [inline]\text{B)}[/inline] [inline](2,+\infty)[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline](1,+\infty)[/inline];      [inline]\text{D)}[/inline] [inline][3,+\infty)[/inline];      [inline]\text{E)}[/inline] [inline](-\infty,-2][/inline];              [inline]\text{N)}[/inline] Ne znam.

16.Link zadatka Krug poluprečnika [inline]r[/inline] dodiruje pravu [inline]5x+12y-18=0[/inline]. Ako je centar [inline]C(x_C,y_C)[/inline] tog kruga presek pravih [inline]3x-4y+14=0[/inline] i [inline]4x+7y-43=0[/inline], onda je [inline](x_C+y_C)\cdot r[/inline] jednako:
[inline]\text{A)}[/inline] [inline]112[/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]28[/inline];      [inline]\text{C)}[/inline] [inline]-28[/inline];      [inline]\text{D)}[/inline] [inline]32[/inline];      [inline]\text{E)}[/inline] [inline]12[/inline];              [inline]\text{N)}[/inline] Ne znam.

17.Link zadatka U razvoju [inline]\left(5-\sqrt[5]2\right)^{2018}[/inline] broj svih članova koji su pozitivni iracionalni brojevi jednak je:
[inline]\text{A)}[/inline] [inline]201[/inline];      [inline]\text{B)}[/inline] [inline]807[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]808[/inline];      [inline]\text{D)}[/inline] [inline]403[/inline];      [inline]\text{E)}[/inline] [inline]1009[/inline];              [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK

18.Link zadatka Zbir kvadrata najvećeg negativnog i najmanjeg pozitivnog rešenja jednačine [inline]3\sin^22x+4\cos2x-3=0[/inline] jednak je:
[inline]\enclose{circle}{\text{A)}}[/inline] [inline]\displaystyle\frac{\pi^2}{8}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{\pi^2}{2}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{\pi^2}{18}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{\pi^2}{9}[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{2\pi^2}{9}[/inline];              [inline]\text{N)}[/inline] Ne znam.

19.Link zadatka Broj svih permutacija slova reči [inline]SOLITER[/inline] u kojima samoglasnici nisu ni na prvom ni na poslednjem mestu, jednak je:
[inline]\text{A)}[/inline] [inline]240[/inline];      [inline]\text{B)}[/inline] [inline]720[/inline];      [inline]\text{C)}[/inline] [inline]7!-6![/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline]1440[/inline];      [inline]\text{E)}[/inline] [inline]7!-5![/inline];              [inline]\text{N)}[/inline] Ne znam.

20.Link zadatka Maksimalna zapremina prave kupe upisane u loptu poluprečnika dužine [inline]9\text{ cm}[/inline] jednaka je:
[inline]\text{A)}[/inline] [inline]432\pi\text{ cm}^3[/inline];      [inline]\text{B)}[/inline] [inline]144\pi\text{ cm}^3[/inline];      [inline]\text{C)}[/inline] [inline]32\pi\text{ cm}^3[/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline]288\pi\text{ cm}^3[/inline];      [inline]\text{E)}[/inline] [inline]96\pi\text{ cm}^3[/inline];              [inline]\text{N)}[/inline] Ne znam.


Izvor: bg-fon2018probni2.pdf


Napomena: Ukoliko vam treba pomoć oko rešavanja nekog od zadataka koji dosad nije obrađivan ni na jednoj temi, slobodno zatražite pomoć na forumu „Matemanija“, naravno uz poštovanje forumskih pravila.