ETF MATF FON GRF TMF FORUM

Probni prijemni ispit na Elektrotehničkom fakultetu u Beogradu

10. jun 2017.


Test ima [inline]20[/inline] zadataka na [inline]2[/inline] stranice. Zadaci [inline]1–2[/inline] vrede po [inline]3[/inline] poena, zadaci [inline]3–7[/inline] vrede po [inline]4[/inline] poena, zadaci [inline]8–13[/inline] vrede po [inline]5[/inline] poena, zadaci [inline]14–18[/inline] vrede po [inline]6[/inline] poena i zadaci [inline]19–20[/inline] po [inline]7[/inline] poena. Pogrešan odgovor donosi [inline]−10\%[/inline] od broja poena predviđenih za tačan odgovor. Zaokruživanje [inline]N[/inline] ne donosi ni pozitivne ni negativne poene.

1.Link zadatka Ako je [inline]p[/inline] procenata broja [inline]A[/inline] jednako [inline]1[/inline], tada je proizvod [inline]p\cdot A[/inline] jednak:
[inline]\text{(A)}[/inline] [inline]1[/inline]      [inline]\text{(B)}[/inline] [inline]10[/inline]      [inline]\text{(C)}[/inline] [inline]100[/inline]      [inline]\text{(D)}[/inline] [inline]0,1[/inline]      [inline]\text{(E)}[/inline] [inline]0,01[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]1[/inline]      [inline]\text{(B)}[/inline] [inline]10[/inline]      [inline]\enclose{box}{\text{(C)}}[/inline] [inline]100[/inline]      [inline]\text{(D)}[/inline] [inline]0,1[/inline]      [inline]\text{(E)}[/inline] [inline]0,01[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

2.Link zadatka Vrednost izraza [inline]\displaystyle\frac{x-1}{x^\frac{3}{4}+x^\frac{1}{2}}\cdot\frac{x^\frac{1}{2}+x^\frac{1}{4}}{x^\frac{1}{2}+1}\cdot x^\frac{1}{4}+1[/inline] za [inline]x=16[/inline] jednaka je:
[inline]\text{(A)}[/inline] [inline]2[/inline]      [inline]\text{(B)}[/inline] [inline]\sqrt[4]2[/inline]      [inline]\text{(C)}[/inline] [inline]8[/inline]      [inline]\text{(D)}[/inline] [inline]4[/inline]      [inline]\text{(E)}[/inline] [inline]3[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]2[/inline]      [inline]\text{(B)}[/inline] [inline]\sqrt[4]2[/inline]      [inline]\text{(C)}[/inline] [inline]8[/inline]      [inline]\enclose{box}{\text{(D)}}[/inline] [inline]4[/inline]      [inline]\text{(E)}[/inline] [inline]3[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

3.Link zadatka Vrednost izraza [inline]\displaystyle\left(\frac{i^{2018}-i^{2017}}{1+i^{2019}}\right)^{2020}[/inline], [inline]\left(i^2=-1\right)[/inline] jednaka je:
[inline]\text{(A)}[/inline] [inline]-i[/inline]      [inline]\text{(B)}[/inline] [inline]i[/inline]      [inline]\text{(C)}[/inline] [inline]1[/inline]      [inline]\text{(D)}[/inline] [inline]-1[/inline]      [inline]\text{(E)}[/inline] [inline]1+i[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]-i[/inline]      [inline]\text{(B)}[/inline] [inline]i[/inline]      [inline]\enclose{box}{\text{(C)}}[/inline] [inline]1[/inline]      [inline]\text{(D)}[/inline] [inline]-1[/inline]      [inline]\text{(E)}[/inline] [inline]1+i[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

4.Link zadatka Vrednost izraza [inline]\displaystyle\sin\left(3^\frac{\log_312+\log_412}{\log_312\cdot\log_412}\cdot\pi\right)[/inline] jednaka je:
[inline]\text{(A)}[/inline] [inline]1[/inline]      [inline]\text{(B)}[/inline] [inline]-1[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{\sqrt2}{2}[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle-\frac{\sqrt2}{2}[/inline]      [inline]\text{(E)}[/inline] [inline]0[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]1[/inline]      [inline]\text{(B)}[/inline] [inline]-1[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{\sqrt2}{2}[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle-\frac{\sqrt2}{2}[/inline]      [inline]\enclose{box}{\text{(E)}}[/inline] [inline]0[/inline]              [inline]\text{(N)}[/inline] Ne znam

5.Link zadatka Izraz [inline]\sin^2(45^\circ+\alpha)-\sin^2(30^\circ-\alpha)-\sin15^\circ\cos(15^\circ+2\alpha)[/inline] identički je jednak izrazu:
[inline]\text{(A)}[/inline] [inline]\sin2\alpha[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{\sqrt3}{2}\sin2\alpha[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{\sqrt2}{2}\sin2\alpha[/inline]      [inline]\text{(D)}[/inline] [inline]1-\cos2\alpha[/inline]      [inline]\text{(E)}[/inline] [inline]\sqrt3\sin2\alpha[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\enclose{box}{\text{(A)}}[/inline] [inline]\sin2\alpha[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{\sqrt3}{2}\sin2\alpha[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{\sqrt2}{2}\sin2\alpha[/inline]      [inline]\text{(D)}[/inline] [inline]1-\cos2\alpha[/inline]      [inline]\text{(E)}[/inline] [inline]\sqrt3\sin2\alpha[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

6.Link zadatka Ako je [inline]\displaystyle\lim_{n\to+\infty}\left(\frac{an^3+(a+1)n^2-n+2017}{bn^3+bn+4034}+\frac{b}{a}\cdot2017^{-n}\right)=\frac{1}{2}[/inline] [inline](a,b\in\mathbb{R}\setminus\{0\})[/inline], gde su [inline]a[/inline] i [inline]b[/inline] uzajamno prosti brojevi, tada je [inline]a^2+b^2[/inline] jednako:
[inline]\text{(A)}[/inline] [inline]13[/inline]      [inline]\text{(B)}[/inline] [inline]2[/inline]      [inline]\text{(C)}[/inline] [inline]8[/inline]      [inline]\text{(D)}[/inline] [inline]5[/inline]      [inline]\text{(E)}[/inline] [inline]2017^2+1[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]13[/inline]      [inline]\text{(B)}[/inline] [inline]2[/inline]      [inline]\text{(C)}[/inline] [inline]8[/inline]      [inline]\enclose{box}{\text{(D)}}[/inline] [inline]5[/inline]      [inline]\text{(E)}[/inline] [inline]2017^2+1[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

7.Link zadatka Jednačina kruga upisanog u trougao čije stranice pripadaju pravama [inline]x=0[/inline], [inline]y=0[/inline] i [inline]3x+4y-12=0[/inline] je:
[inline]\text{(A)}[/inline] [inline]x^2+y^2-2x-2y+1=0[/inline]      [inline]\text{(B)}[/inline] [inline]x^2+y^2-2x-4y+2=0[/inline]      [inline]\text{(C)}[/inline] [inline]x^2+y^2-x-y+\frac{1}{4}=0[/inline]      [inline]\text{(D)}[/inline] [inline]x^2+y^2-\frac{3}{2}x-y+\frac{3}{4}=0[/inline]      [inline]\text{(E)}[/inline] nijedan od prethodno ponuđenih odgovora              [inline]\text{(N)}[/inline] Ne znam[inline]\enclose{box}{\text{(A)}}[/inline] [inline]x^2+y^2-2x-2y+1=0[/inline]      [inline]\text{(B)}[/inline] [inline]x^2+y^2-2x-4y+2=0[/inline]      [inline]\text{(C)}[/inline] [inline]x^2+y^2-x-y+\frac{1}{4}=0[/inline]      [inline]\text{(D)}[/inline] [inline]x^2+y^2-\frac{3}{2}x-y+\frac{3}{4}=0[/inline]      [inline]\text{(E)}[/inline] nijedan od prethodno ponuđenih odgovora              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

8.Link zadatka Brojevi [inline]a_1[/inline], [inline]a_2[/inline] i [inline]a_3[/inline] su prva tri člana rastuće geometrijske progresije a zbir im je jednak [inline]19[/inline]. Brojevi [inline]a_1[/inline], [inline]a_2+4[/inline] i [inline]a_3+7[/inline] su prva tri člana aritmetičke progresije. Tada je zbir [inline]3a_1+4a_2+5a_3[/inline] jednak:
[inline]\text{(A)}[/inline] [inline]81[/inline]      [inline]\text{(B)}[/inline] [inline]45[/inline]      [inline]\text{(C)}[/inline] [inline]65[/inline]      [inline]\text{(D)}[/inline] [inline]75[/inline]      [inline]\text{(E)}[/inline] [inline]85[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\enclose{box}{\text{(A)}}[/inline] [inline]81[/inline]      [inline]\text{(B)}[/inline] [inline]45[/inline]      [inline]\text{(C)}[/inline] [inline]65[/inline]      [inline]\text{(D)}[/inline] [inline]75[/inline]      [inline]\text{(E)}[/inline] [inline]85[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

9.Link zadatka Data je funkcija [inline]\displaystyle f(x)=\sqrt{\frac{\sqrt x+1}{\sqrt x-1}}[/inline]. Tada je vrednost [inline]f'(4)[/inline] jednaka:
[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{\sqrt3}{12}[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{\sqrt3}{24}[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle-\frac{\sqrt3}{24}[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle-\frac{\sqrt3}{12}[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{\sqrt3}{6}[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{\sqrt3}{12}[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{\sqrt3}{24}[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle-\frac{\sqrt3}{24}[/inline]      [inline]\enclose{box}{\text{(D)}}[/inline] [inline]\displaystyle-\frac{\sqrt3}{12}[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{\sqrt3}{6}[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

10.Link zadatka U jednakokraki trougao čiji je jedan unutrašnji ugao [inline]120^\circ[/inline], upisan je krug poluprečnika [inline]3\text{ cm}[/inline]. Obim tog trougla (u [inline]\text{cm}[/inline]) jednak je:
[inline]\text{(A)}[/inline] [inline]3+\sqrt3[/inline]      [inline]\text{(B)}[/inline] [inline]4+2\sqrt3[/inline]      [inline]\text{(C)}[/inline] [inline]2\left(12+7\sqrt3\right)[/inline]      [inline]\text{(D)}[/inline] [inline]2\left(10+7\sqrt3\right)[/inline]      [inline]\text{(E)}[/inline] [inline]3\left(10-2\sqrt3\right)[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]3+\sqrt3[/inline]      [inline]\text{(B)}[/inline] [inline]4+2\sqrt3[/inline]      [inline]\enclose{box}{\text{(C)}}[/inline] [inline]2\left(12+7\sqrt3\right)[/inline]      [inline]\text{(D)}[/inline] [inline]2\left(10+7\sqrt3\right)[/inline]      [inline]\text{(E)}[/inline] [inline]3\left(10-2\sqrt3\right)[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

11.Link zadatka Skup svih realnih rešenja nejednačine [inline]\displaystyle\log_{x+3}\left(9-x^2\right)-\frac{1}{16}\log_{x+3}^2(x-3)^2\ge2[/inline] je oblika (za neke realne brojeve [inline]a[/inline], [inline]b[/inline] i [inline]c[/inline] takve da je [inline]-\infty<a<b<c<+\infty[/inline]):
[inline]\text{(A)}[/inline] [inline]\{a\}[/inline]      [inline]\text{(B)}[/inline] [inline][a,b][/inline]      [inline]\text{(C)}[/inline] [inline](a,b)[/inline]      [inline]\text{(D)}[/inline] [inline][a,b)\cup(b,c][/inline]      [inline]\text{(E)}[/inline] [inline][a,b)[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\enclose{box}{\text{(A)}}[/inline] [inline]\{a\}[/inline]      [inline]\text{(B)}[/inline] [inline][a,b][/inline]      [inline]\text{(C)}[/inline] [inline](a,b)[/inline]      [inline]\text{(D)}[/inline] [inline][a,b)\cup(b,c][/inline]      [inline]\text{(E)}[/inline] [inline][a,b)[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

12.Link zadatka Zbir svih realnih rešenja jednačine [inline]|\sin x|=\sin x+2\cos x[/inline] koja pripadaju intervalu [inline](0,3\pi)[/inline] jednak je:
[inline]\text{(A)}[/inline] [inline]5\pi[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{11\pi}{2}[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{9\pi}{4}[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{19\pi}{4}[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{39\pi}{4}[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]5\pi[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{11\pi}{2}[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{9\pi}{4}[/inline]      [inline]\enclose{box}{\text{(D)}}[/inline] [inline]\displaystyle\frac{19\pi}{4}[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{39\pi}{4}[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

13.Link zadatka Sva realna rešenja jednačine [inline]\sqrt{x\sqrt[5]x}-\sqrt[5]{x\sqrt x}=56[/inline] nalaze se u intervalu:
[inline]\text{(A)}[/inline] [inline](0,500][/inline]      [inline]\text{(B)}[/inline] [inline](500,1000][/inline]      [inline]\text{(C)}[/inline] [inline](1000,1500][/inline]      [inline]\text{(D)}[/inline] [inline](1500,2000][/inline]      [inline]\text{(E)}[/inline] [inline](2000,2017][/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline](0,500][/inline]      [inline]\text{(B)}[/inline] [inline](500,1000][/inline]      [inline]\enclose{box}{\text{(C)}}[/inline] [inline](1000,1500][/inline]      [inline]\text{(D)}[/inline] [inline](1500,2000][/inline]      [inline]\text{(E)}[/inline] [inline](2000,2017][/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

14.Link zadatka Za one vrednosti [inline]x\in\mathbb{R}[/inline] za koje je ispunjena nejednačina [inline](0,5)^{\sin^2x-\sin^4x+\cdots+(-1)^{n-1}\sin^{2n}x+\cdots}>\sqrt[15]{0,25^{2\cos^2x}}[/inline], vrednost [inline]\cos^2x[/inline] pripada intervalu:
[inline]\text{(A)}[/inline] [inline]\displaystyle\left(0,\frac{1}{4}\right)[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle\left(\frac{1}{4},\frac{1}{2}\right)[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\left(0,\frac{1}{2}\right)[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\left(\frac{1}{2},\frac{3}{4}\right)[/inline]      [inline]\text{(E)}[/inline] nijedan od prethodno ponuđenih odgovora              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]\displaystyle\left(0,\frac{1}{4}\right)[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle\left(\frac{1}{4},\frac{1}{2}\right)[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\left(0,\frac{1}{2}\right)[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\left(\frac{1}{2},\frac{3}{4}\right)[/inline]      [inline]\enclose{box}{\text{(E)}}[/inline] nijedan od prethodno ponuđenih odgovora              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

15.Link zadatka Ukupan broj realnih rešenja sistema jednačina [inline]\displaystyle\frac{2\cdot4^x+1}{2^x+2}-4^x=\frac{y}{2^{x+1}+4},\quad[/inline] [inline]4\cdot2^{3x}+y^2=4[/inline] je:
[inline]\text{(A)}[/inline] [inline]2[/inline]      [inline]\text{(B)}[/inline] [inline]1[/inline]      [inline]\text{(C)}[/inline] [inline]3[/inline]      [inline]\text{(D)}[/inline] [inline]4[/inline]      [inline]\text{(E)}[/inline] [inline]0[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]2[/inline]      [inline]\enclose{box}{\text{(B)}}[/inline] [inline]1[/inline]      [inline]\text{(C)}[/inline] [inline]3[/inline]      [inline]\text{(D)}[/inline] [inline]4[/inline]      [inline]\text{(E)}[/inline] [inline]0[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

16.Link zadatka Ako su [inline]p[/inline], [inline]q[/inline] i [inline]r[/inline] koreni jednačine [inline]x^3-x+1=0[/inline], tada je [inline]p^5+q^5+r^5[/inline] jednako:
[inline]\text{(A)}[/inline] [inline]0[/inline]      [inline]\text{(B)}[/inline] [inline]-5[/inline]      [inline]\text{(C)}[/inline] [inline]-2[/inline]      [inline]\text{(D)}[/inline] [inline]-3[/inline]      [inline]\text{(E)}[/inline] [inline]-4[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]0[/inline]      [inline]\enclose{box}{\text{(B)}}[/inline] [inline]-5[/inline]      [inline]\text{(C)}[/inline] [inline]-2[/inline]      [inline]\text{(D)}[/inline] [inline]-3[/inline]      [inline]\text{(E)}[/inline] [inline]-4[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

17.Link zadatka Osnova piramide je pravougaonik čija je površina [inline]8\sqrt3\text{ cm}^2[/inline] a ugao između njegovih dijagonala [inline]60^\circ[/inline]. Bočne ivice piramide nagnute su prema ravni osnove pod uglom od [inline]30^\circ[/inline]. Zapremina piramide (u [inline]\text{cm}^3[/inline]) je:
[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{32\sqrt2}{3}[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{16\sqrt2}{3}[/inline]      [inline]\text{(C)}[/inline] [inline]16\sqrt2[/inline]      [inline]\text{(D)}[/inline] [inline]8\sqrt2[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{8\sqrt2}{3}[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{32\sqrt2}{3}[/inline]      [inline]\enclose{box}{\text{(B)}}[/inline] [inline]\displaystyle\frac{16\sqrt2}{3}[/inline]      [inline]\text{(C)}[/inline] [inline]16\sqrt2[/inline]      [inline]\text{(D)}[/inline] [inline]8\sqrt2[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{8\sqrt2}{3}[/inline]              [inline]\text{(N)}[/inline] Ne znam

18.Link zadatka U razvoju binoma [inline]\displaystyle\left(\frac{1}{\sqrt[3]{b^2}}-\frac{\sqrt[4]b}{\sqrt[8]{a^3}}\right)^n[/inline] [inline](a,b\in\mathbb{R}^+,\;n\in\mathbb{N})[/inline] postoji član oblika [inline]A\cdot b^6[/inline]. Ako je binomni koeficijent četvrtog člana [inline]11[/inline] puta veći od binomnog koeficijenta trećeg člana, tada je [inline]A[/inline] jednako:
[inline]\text{(A)}[/inline] [inline]353a^{-4}[/inline]      [inline]\text{(B)}[/inline] [inline]25a^{-12}[/inline]      [inline]\text{(C)}[/inline] [inline]3254a^{-4}[/inline]      [inline]\text{(D)}[/inline] [inline]2025a^{-4}[/inline]      [inline]\text{(E)}[/inline] [inline]6545a^{-12}[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]353a^{-4}[/inline]      [inline]\text{(B)}[/inline] [inline]25a^{-12}[/inline]      [inline]\text{(C)}[/inline] [inline]3254a^{-4}[/inline]      [inline]\text{(D)}[/inline] [inline]2025a^{-4}[/inline]      [inline]\enclose{box}{\text{(E)}}[/inline] [inline]6545a^{-12}[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

19.Link zadatka Ako je [inline]m[/inline] najmanja, a [inline]M[/inline] najveća vrednost funkcije [inline]f(x)=-\cos2x-x[/inline] na segmentu [inline]\displaystyle\left[-\frac{\pi}{4},\frac{\pi}{4}\right][/inline], tada je [inline]m+M[/inline] jednako:
[inline]\text{(A)}[/inline] [inline]\displaystyle-\frac{\pi}{3}-\frac{\sqrt3}{2}[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle-\frac{\pi}{6}-\frac{\sqrt3}{2}[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{\pi}{6}-\frac{\sqrt3}{2}[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{\pi}{3}+\frac{\sqrt3}{2}[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{\pi}{6}+\frac{\sqrt3}{2}[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]\displaystyle-\frac{\pi}{3}-\frac{\sqrt3}{2}[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle-\frac{\pi}{6}-\frac{\sqrt3}{2}[/inline]      [inline]\enclose{box}{\text{(C)}}[/inline] [inline]\displaystyle\frac{\pi}{6}-\frac{\sqrt3}{2}[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{\pi}{3}+\frac{\sqrt3}{2}[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{\pi}{6}+\frac{\sqrt3}{2}[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

20.Link zadatka Dati su skupovi [inline]A=\{a_1,a_2,a_3,a_4,a_5\}[/inline] i [inline]B=\{b_1,b_2,b_3,b_4,b_5,b_6,b_7,b_8,b_9\}[/inline]. Ukupan broj bijekcija koje preslikavaju skup [inline]A[/inline] u neki podskup skupa [inline]B[/inline] pripada intervalu:
[inline]\text{(A)}[/inline] [inline](1,100][/inline]      [inline]\text{(B)}[/inline] [inline](100,1000][/inline]      [inline]\text{(C)}[/inline] [inline](1000,10000][/inline]      [inline]\text{(D)}[/inline] [inline](10000,20000][/inline]      [inline]\text{(E)}[/inline] nijedan od prethodno ponuđenih odgovora              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline](1,100][/inline]      [inline]\text{(B)}[/inline] [inline](100,1000][/inline]      [inline]\text{(C)}[/inline] [inline](1000,10000][/inline]      [inline]\enclose{box}{\text{(D)}}[/inline] [inline](10000,20000][/inline]      [inline]\text{(E)}[/inline] nijedan od prethodno ponuđenih odgovora              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK


Izvor: LINK


Napomena: Ukoliko vam treba pomoć oko rešavanja nekog od zadataka koji dosad nije obrađivan ni na jednoj temi, slobodno zatražite pomoć na forumu „Matemanija“, naravno uz poštovanje forumskih pravila.