ETF MATF FON GRF TMF FORUM

Prijemni ispit na Elektrotehničkom fakultetu u Beogradu

24. jun 2019.


Test ima [inline]20[/inline] zadataka na [inline]2[/inline] stranice. Zadaci [inline]1–2[/inline] vrede po [inline]3[/inline] poena, zadaci [inline]3–7[/inline] vrede po [inline]4[/inline] poena, zadaci [inline]8–13[/inline] vrede po [inline]5[/inline] poena, zadaci [inline]14–18[/inline] vrede po [inline]6[/inline] poena i zadaci [inline]19–20[/inline] vrede po [inline]7[/inline] poena. Pogrešan odgovor donosi [inline]−10\%[/inline] od broja poena za tačan odgovor. Zaokruživanje [inline]N[/inline] ne donosi ni pozitivne, ni negativne poene.

1.Link zadatka Ako je [inline]a=2+\sqrt3[/inline] i [inline]b=2-\sqrt3[/inline], onda je vrednost izraza [inline]\Bigl(\left(a+a^{-1}\right)+\left(b+b^{-1}\right)\Bigr)^\frac{1}{2}[/inline] jednaka:
[inline]\text{(A)}[/inline] [inline]1[/inline]      [inline]\text{(B)}[/inline] [inline]2\sqrt2[/inline]      [inline]\text{(C)}[/inline] [inline]2\sqrt3[/inline]      [inline]\text{(D)}[/inline] [inline]2[/inline]      [inline]\text{(E)}[/inline] [inline]3\sqrt2[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]1[/inline]      [inline]\enclose{box}{\text{(B)}}[/inline] [inline]2\sqrt2[/inline]      [inline]\text{(C)}[/inline] [inline]2\sqrt3[/inline]      [inline]\text{(D)}[/inline] [inline]2[/inline]      [inline]\text{(E)}[/inline] [inline]3\sqrt2[/inline]              [inline]\text{(N)}[/inline] Ne znam

2.Link zadatka Ako su [inline]x[/inline] i [inline]y[/inline] realni brojevi za koje važi [inline]2x-3y=7[/inline], onda je vrednost izraza [inline]\displaystyle\frac{4^x}{8^y}[/inline] jednaka:
[inline]\text{(A)}[/inline] [inline]2^7[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{1}{2^7}[/inline]      [inline]\text{(C)}[/inline] [inline]4^4[/inline]      [inline]\text{(D)}[/inline] [inline]8^2[/inline]      [inline]\text{(E)}[/inline] Ne može se odrediti na osnovu datog podatka              [inline]\text{(N)}[/inline] Ne znam[inline]\enclose{box}{\text{(A)}}[/inline] [inline]2^7[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{1}{2^7}[/inline]      [inline]\text{(C)}[/inline] [inline]4^4[/inline]      [inline]\text{(D)}[/inline] [inline]8^2[/inline]      [inline]\text{(E)}[/inline] Ne može se odrediti na osnovu datog podatka              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

3.Link zadatka Kolika je dužina zajedničke tetive dva podudarna kruga čiji su poluprečnici [inline]6\text{ cm}[/inline] i čiji su centri na rastojanju [inline]8\text{ cm}[/inline]?
[inline]\text{(A)}[/inline] [inline]5\text{ cm}[/inline]      [inline]\text{(B)}[/inline] [inline]2\sqrt5\text{ cm}[/inline]      [inline]\text{(C)}[/inline] [inline]10\text{ cm}[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{\sqrt5}{2}\text{ cm}[/inline]      [inline]\text{(E)}[/inline] [inline]4\sqrt5\text{ cm}[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]5\text{ cm}[/inline]      [inline]\text{(B)}[/inline] [inline]2\sqrt5\text{ cm}[/inline]      [inline]\text{(C)}[/inline] [inline]10\text{ cm}[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{\sqrt5}{2}\text{ cm}[/inline]      [inline]\enclose{box}{\text{(E)}}[/inline] [inline]4\sqrt5\text{ cm}[/inline]              [inline]\text{(N)}[/inline] Ne znam

4.Link zadatka Ako je [inline]f(x)=x(x+1)(x+2)(x+3)(x+4)[/inline], onda je [inline]f'(-2)[/inline] jednako:
[inline]\text{(A)}[/inline] [inline]0[/inline]      [inline]\text{(B)}[/inline] [inline]1[/inline]      [inline]\text{(C)}[/inline] [inline]-1[/inline]      [inline]\text{(D)}[/inline] [inline]4[/inline]      [inline]\text{(E)}[/inline] [inline]-4[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]0[/inline]      [inline]\text{(B)}[/inline] [inline]1[/inline]      [inline]\text{(C)}[/inline] [inline]-1[/inline]      [inline]\enclose{box}{\text{(D)}}[/inline] [inline]4[/inline]      [inline]\text{(E)}[/inline] [inline]-4[/inline]              [inline]\text{(N)}[/inline] Ne znam

5.Link zadatka Ako je [inline]\displaystyle\sin\alpha=-\frac{5}{13}[/inline] i [inline]\displaystyle\alpha\in\left(\frac{3\pi}{2},2\pi\right)[/inline], onda je [inline]\displaystyle\text{tg}\left(\frac{\pi}{4}+\alpha\right)[/inline] jednak:
[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{17}{7}[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{7}{12}[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{17}{13}[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{7}{17}[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{12}{7}[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{17}{7}[/inline]      [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{7}{12}[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{17}{13}[/inline]      [inline]\enclose{box}{\text{(D)}}[/inline] [inline]\displaystyle\frac{7}{17}[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{12}{7}[/inline]              [inline]\text{(N)}[/inline] Ne znam

6.Link zadatka Neka su [inline]x_1[/inline], [inline]x_2[/inline] i [inline]x_3[/inline] rešenja jednačine [inline]x^3+px+q=0[/inline], [inline]p,q\in\mathbb{R}[/inline], [inline]p\ne0[/inline], [inline]q\ne0[/inline].
Tada je vrednost izraza [inline]\displaystyle\frac{x_1+x_2+x_3}{x_1^2+x_2^2+x_3^2}-x_1x_2(1+x_3)-(x_1+x_2)x_3[/inline] jednaka:
[inline]\text{(A)}[/inline] [inline]p\cdot q[/inline]      [inline]\text{(B)}[/inline] [inline]p+q[/inline]      [inline]\text{(C)}[/inline] [inline]p-q[/inline]      [inline]\text{(D)}[/inline] [inline]q-p[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{p}{q}[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]p\cdot q[/inline]      [inline]\text{(B)}[/inline] [inline]p+q[/inline]      [inline]\text{(C)}[/inline] [inline]p-q[/inline]      [inline]\enclose{box}{\text{(D)}}[/inline] [inline]q-p[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{p}{q}[/inline]              [inline]\text{(N)}[/inline] Ne znam

7.Link zadatka Neka su [inline]x[/inline] i [inline]y[/inline], [inline]x\ne0[/inline], [inline]y\ne0[/inline], realni brojevi koji zadovoljavaju nejednakost [inline]|x|\lt|y|[/inline].
Koja od sledećih tvrđenja su uvek tačna?
[inline]\displaystyle(i)\;\frac{x}{y}\lt1\qquad[/inline] [inline](ii)\;x^2\lt y^2\qquad[/inline] [inline]\displaystyle(iii)\;\frac{1}{x}>\frac{1}{y}\qquad[/inline] [inline]\displaystyle(iv)\;\frac{1}{x^2}\lt\frac{1}{y^2}\qquad[/inline] [inline](v)\;x\lt y[/inline]
[inline]\text{(A)}[/inline] Samo [inline](i)[/inline]      [inline]\text{(B)}[/inline] [inline](i)[/inline] i [inline](ii)[/inline]      [inline]\text{(C)}[/inline] [inline](ii)[/inline], [inline](iii)[/inline] i [inline](v)[/inline]      [inline]\text{(D)}[/inline] [inline](i)[/inline] i [inline](iv)[/inline]      [inline]\text{(E)}[/inline] [inline](i)[/inline], [inline](ii)[/inline] i [inline](v)[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] Samo [inline](i)[/inline]      [inline]\enclose{box}{\text{(B)}}[/inline] [inline](i)[/inline] i [inline](ii)[/inline]      [inline]\text{(C)}[/inline] [inline](ii)[/inline], [inline](iii)[/inline] i [inline](v)[/inline]      [inline]\text{(D)}[/inline] [inline](i)[/inline] i [inline](iv)[/inline]      [inline]\text{(E)}[/inline] [inline](i)[/inline], [inline](ii)[/inline] i [inline](v)[/inline]              [inline]\text{(N)}[/inline] Ne znam

8.Link zadatka Granična vrednost [inline]\displaystyle\lim_{x\to3}\left(\frac{x^3-6x^2+11x-6}{x^2-6x+9}\cdot\frac{\sin(x-3)}{\ln(2x-5)+\cos\frac{\pi}{x}}\right)[/inline] jednaka je:
[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{8\sqrt3}{3}[/inline]      [inline]\text{(B)}[/inline] [inline]0[/inline]      [inline]\text{(C)}[/inline] [inline]4[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{1}{2}[/inline]      [inline]\text{(E)}[/inline] [inline]+\infty[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{8\sqrt3}{3}[/inline]      [inline]\text{(B)}[/inline] [inline]0[/inline]      [inline]\enclose{box}{\text{(C)}}[/inline] [inline]4[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{1}{2}[/inline]      [inline]\text{(E)}[/inline] [inline]+\infty[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

9.Link zadatka Obim trougla čije stranice obrazuju aritmetičku progresiju sa razlikom [inline]4\text{ cm}[/inline] i čiji je jedan ugao [inline]120^\circ[/inline] jednak je:
[inline]\text{(A)}[/inline] [inline]14\text{ cm}[/inline]      [inline]\text{(B)}[/inline] [inline]20\text{ cm}[/inline]      [inline]\text{(C)}[/inline] [inline]16\text{ cm}[/inline]      [inline]\text{(D)}[/inline] [inline]30\text{ cm}[/inline]      [inline]\text{(E)}[/inline] [inline]10\text{ cm}[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]14\text{ cm}[/inline]      [inline]\text{(B)}[/inline] [inline]20\text{ cm}[/inline]      [inline]\text{(C)}[/inline] [inline]16\text{ cm}[/inline]      [inline]\enclose{box}{\text{(D)}}[/inline] [inline]30\text{ cm}[/inline]      [inline]\text{(E)}[/inline] [inline]10\text{ cm}[/inline]              [inline]\text{(N)}[/inline] Ne znam

10.Link zadatka Zbir svih realnih rešenja jednačine [inline]\sqrt{4x^2+9x+5}-\sqrt{2x^2+x-1}=\sqrt{x^2-1}[/inline] jeste:
[inline]\text{(A)}[/inline] [inline]4[/inline]      [inline]\text{(B)}[/inline] [inline]6[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{26}{7}[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{44}{7}[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle-\frac{16}{7}[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\enclose{box}{\text{(A)}}[/inline] [inline]4[/inline]      [inline]\text{(B)}[/inline] [inline]6[/inline]      [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{26}{7}[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{44}{7}[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle-\frac{16}{7}[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

11.Link zadatka Neka je [inline]x\in\mathbb{R}[/inline] pozitivan broj i neka je [inline]n\in\mathbb{N}[/inline] paran broj. Zbir svih binomnih koeficijenata u razvoju binoma [inline]\displaystyle\left(x^{2019}+\frac{1}{x^{2019}}\right)^n[/inline] četiri puta je veći od zbira svih binomnih koeficijenata u razvoju binoma [inline]\displaystyle\left(\sqrt x+\frac{1}{\sqrt x}\right)^\frac{n}{2}[/inline]. Zbir onih članova ova dva razvoja binoma koji ne sadrže [inline]x[/inline] jeste:
[inline]\text{(A)}[/inline] [inline]2[/inline]      [inline]\text{(B)}[/inline] [inline]6[/inline]      [inline]\text{(C)}[/inline] [inline]8[/inline]      [inline]\text{(D)}[/inline] [inline]4[/inline]      [inline]\text{(E)}[/inline] [inline]10[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]2[/inline]      [inline]\text{(B)}[/inline] [inline]6[/inline]      [inline]\enclose{box}{\text{(C)}}[/inline] [inline]8[/inline]      [inline]\text{(D)}[/inline] [inline]4[/inline]      [inline]\text{(E)}[/inline] [inline]10[/inline]              [inline]\text{(N)}[/inline] Ne znam

12.Link zadatka Rotacijom pravouglog trougla, koji nije jednakokraki, oko hipotenuze formirano je obrtno telo [inline]T_1[/inline], a rotacijom oko duže katete obrtno telo [inline]T_2[/inline]. Ako je [inline]\alpha[/inline] najmanji ugao datog trougla, onda je odnos zapremina tela [inline]T_1[/inline] i [inline]T_2[/inline] jednak:
[inline]\text{(A)}[/inline] [inline]\sin\alpha[/inline]      [inline]\text{(B)}[/inline] [inline]\cos\alpha[/inline]      [inline]\text{(C)}[/inline] [inline]\text{ctg }\alpha[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{1}{\cos\alpha}[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{1}{\sin\alpha}[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]\sin\alpha[/inline]      [inline]\enclose{box}{\text{(B)}}[/inline] [inline]\cos\alpha[/inline]      [inline]\text{(C)}[/inline] [inline]\text{ctg }\alpha[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{1}{\cos\alpha}[/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{1}{\sin\alpha}[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

13.Link zadatka Jednačina kružnice čiji je centar na [inline]x[/inline]-osi i koja sa parabolom [inline]y^2=12x[/inline] u tački [inline]A(3,6)[/inline] ima zajedničku tangentu jeste:
[inline]\text{(A)}[/inline] [inline](x-3)^2+y^2=9[/inline]      [inline]\text{(B)}[/inline] [inline](x-6)^2+y^2=36[/inline]      [inline]\text{(C)}[/inline] [inline](x-9)^2+y^2=81[/inline]      [inline]\text{(D)}[/inline] [inline](x-9)^2+y^2=72[/inline]      [inline]\text{(E)}[/inline] [inline](x-6)^2+y^2=72[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline](x-3)^2+y^2=9[/inline]      [inline]\text{(B)}[/inline] [inline](x-6)^2+y^2=36[/inline]      [inline]\text{(C)}[/inline] [inline](x-9)^2+y^2=81[/inline]      [inline]\enclose{box}{\text{(D)}}[/inline] [inline](x-9)^2+y^2=72[/inline]      [inline]\text{(E)}[/inline] [inline](x-6)^2+y^2=72[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

14.Link zadatka Zbir svih vrednosti parametra [inline]\alpha\in\mathbb{R}[/inline] za koje grafici funkcija [inline]y=(a+2)x^2-ax-3[/inline] i [inline]y=ax-4[/inline] imaju tačno jednu zajedničku tačku jeste:
[inline]\text{(A)}[/inline] [inline]0[/inline]      [inline]\text{(B)}[/inline] [inline]2[/inline]      [inline]\text{(C)}[/inline] [inline]-1[/inline]      [inline]\text{(D)}[/inline] [inline]1[/inline]      [inline]\text{(E)}[/inline] [inline]-2[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]0[/inline]      [inline]\text{(B)}[/inline] [inline]2[/inline]      [inline]\enclose{box}{\text{(C)}}[/inline] [inline]-1[/inline]      [inline]\text{(D)}[/inline] [inline]1[/inline]      [inline]\text{(E)}[/inline] [inline]-2[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

15.Link zadatka Broj realnih rešenja jednačine [inline]3^x+4^x=5^x[/inline] jeste:
[inline]\text{(A)}[/inline] [inline]0[/inline]      [inline]\text{(B)}[/inline] [inline]1[/inline]      [inline]\text{(C)}[/inline] [inline]2[/inline]      [inline]\text{(D)}[/inline] [inline]3[/inline]      [inline]\text{(E)}[/inline] veći od [inline]3[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]0[/inline]      [inline]\enclose{box}{\text{(B)}}[/inline] [inline]1[/inline]      [inline]\text{(C)}[/inline] [inline]2[/inline]      [inline]\text{(D)}[/inline] [inline]3[/inline]      [inline]\text{(E)}[/inline] veći od [inline]3[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

16.Link zadatka Dat je skup [inline]\displaystyle S=\left\{\left(\frac{-1+i\sqrt3}{2}\right)^{2019},\text{Im}\left(\left(\frac{1+i}{\sqrt2}\right)^{2019}\right),0.3333333,\frac{\pi}{3},\sin\frac{\pi}{3},\frac{22}{7}\right\}[/inline] i skup racionalnih brojeva [inline]\displaystyle\mathbb{Q}=\left\{\frac{p}{q}\Bigm|p\in\mathbb{Z},q\in\mathbb{N}\right\}[/inline], [inline]i^2=-1[/inline]. Broj elemenata skupa [inline]S\cap\mathbb{Q}[/inline] jeste:
[inline]\text{(A)}[/inline] [inline]2[/inline]      [inline]\text{(B)}[/inline] [inline]3[/inline]      [inline]\text{(C)}[/inline] [inline]4[/inline]      [inline]\text{(D)}[/inline] [inline]5[/inline]      [inline]\text{(E)}[/inline] [inline]6[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]2[/inline]      [inline]\enclose{box}{\text{(B)}}[/inline] [inline]3[/inline]      [inline]\text{(C)}[/inline] [inline]4[/inline]      [inline]\text{(D)}[/inline] [inline]5[/inline]      [inline]\text{(E)}[/inline] [inline]6[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

17.Link zadatka Skup rešenja nejednačine [inline]\log_{\sin x}\cos x+\log_{\cos x}\sin x>2[/inline] na segmentu [inline][0,2\pi][/inline] jeste oblika (za neke realne brojeve [inline]a,b,c,d[/inline] takve da je [inline]0\le a\lt b\lt c\lt d\le2\pi[/inline]):
[inline]\text{(A)}[/inline] [inline](a,b)\cup(b,c)[/inline]      [inline]\text{(B)}[/inline] [inline](a,b)\cup(c,d)[/inline]      [inline]\text{(C)}[/inline] [inline](a,b)[/inline]      [inline]\text{(D)}[/inline] [inline][a,b)\cup(c,d][/inline]      [inline]\text{(E)}[/inline] [inline]\emptyset[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\enclose{box}{\text{(A)}}[/inline] [inline](a,b)\cup(b,c)[/inline]      [inline]\text{(B)}[/inline] [inline](a,b)\cup(c,d)[/inline]      [inline]\text{(C)}[/inline] [inline](a,b)[/inline]      [inline]\text{(D)}[/inline] [inline][a,b)\cup(c,d][/inline]      [inline]\text{(E)}[/inline] [inline]\emptyset[/inline]              [inline]\text{(N)}[/inline] Ne znam

18.Link zadatka Ako su [inline]\alpha[/inline], [inline]\beta[/inline] i [inline]\gamma[/inline], [inline]\alpha\ge\beta\ge\gamma[/inline], uglovi trougla i ako je [inline]\sin\alpha-\sin\beta+\sin\gamma=1[/inline], onda je ugao [inline]\gamma[/inline] jednak:
[inline]\text{(A)}[/inline] [inline]60^\circ[/inline]      [inline]\text{(B)}[/inline] [inline]20^\circ[/inline]      [inline]\text{(C)}[/inline] [inline]15^\circ[/inline]      [inline]\text{(D)}[/inline] [inline]30^\circ[/inline]      [inline]\text{(E)}[/inline] [inline]45^\circ[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]60^\circ[/inline]      [inline]\text{(B)}[/inline] [inline]20^\circ[/inline]      [inline]\text{(C)}[/inline] [inline]15^\circ[/inline]      [inline]\text{(D)}[/inline] [inline]30^\circ[/inline]      [inline]\enclose{box}{\text{(E)}}[/inline] [inline]45^\circ[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK

19.Link zadatka Neka je [inline]A=\{1,2,\ldots,2019\}[/inline] i [inline]B=\{(x,y)\in A\times A\bigm||x-y|\ge2\}[/inline]. Broj elemenata skupa [inline]B[/inline] jeste:
[inline]\text{(A)}[/inline] [inline]2019^2[/inline]      [inline]\text{(B)}[/inline] [inline]2^{2019}[/inline]      [inline]\text{(C)}[/inline] [inline]2018\cdot2017[/inline]      [inline]\text{(D)}[/inline] [inline]2018![/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle{2018\choose2}[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]2019^2[/inline]      [inline]\text{(B)}[/inline] [inline]2^{2019}[/inline]      [inline]\enclose{box}{\text{(C)}}[/inline] [inline]2018\cdot2017[/inline]      [inline]\text{(D)}[/inline] [inline]2018![/inline]      [inline]\text{(E)}[/inline] [inline]\displaystyle{2018\choose2}[/inline]              [inline]\text{(N)}[/inline] Ne znam

20.Link zadatka U Dekartovom pravouglom koordinatnom sistemu date su tačke [inline]A(2,1)[/inline] i [inline]B(4,3)[/inline]. Ako je [inline]C[/inline] tačka na [inline]x[/inline]-osi za koju je zbir dužina duži [inline]AC[/inline] i [inline]BC[/inline] minimalan, tada je taj zbir jednak:
[inline]\text{(A)}[/inline] [inline]2\sqrt5[/inline]      [inline]\text{(B)}[/inline] [inline]\sqrt2\left(1+\sqrt5\right)[/inline]      [inline]\text{(C)}[/inline] [inline]4\sqrt2[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{5}{2}[/inline]      [inline]\text{(E)}[/inline] [inline]1[/inline]              [inline]\text{(N)}[/inline] Ne znam[inline]\enclose{box}{\text{(A)}}[/inline] [inline]2\sqrt5[/inline]      [inline]\text{(B)}[/inline] [inline]\sqrt2\left(1+\sqrt5\right)[/inline]      [inline]\text{(C)}[/inline] [inline]4\sqrt2[/inline]      [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{5}{2}[/inline]      [inline]\text{(E)}[/inline] [inline]1[/inline]              [inline]\text{(N)}[/inline] Ne znam

Obrađeno u temi: LINK


Izvor: LINK


Napomena: Ukoliko vam treba pomoć oko rešavanja nekog od zadataka koji dosad nije obrađivan ni na jednoj temi, slobodno zatražite pomoć na forumu „Matemanija“, naravno uz poštovanje forumskih pravila.