1.Link zadatka Ako je [inline]\displaystyle\log_9\frac{1}{x}+\frac{1}{2}=\frac{1}{2}\log_3(9y)[/inline], [inline]x>0[/inline] i [inline]y>0[/inline], onda je [inline]8^{6xy}[/inline] jednako:
[inline]\text{(A)}[/inline] [inline]2[/inline] [inline]\text{(B)}[/inline] [inline]2\sqrt2[/inline] [inline]\text{(C)}[/inline] [inline]8[/inline] [inline]\text{(D)}[/inline] [inline]64[/inline] [inline]\text{(E)}[/inline] Ne može se odrediti na osnovu datog podatka [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]2[/inline] [inline]\text{(B)}[/inline] [inline]2\sqrt2[/inline] [inline]\text{(C)}[/inline] [inline]8[/inline] [inline]\enclose{circle}{\text{(D)}}[/inline] [inline]64[/inline] [inline]\text{(E)}[/inline] Ne može se odrediti na osnovu datog podatka [inline]\text{(N)}[/inline] Ne znam
2.Link zadatka Vrednost izraza [inline]\displaystyle\sqrt{\left(\frac{\sqrt a+\sqrt b}{\sqrt a-\sqrt b}+\frac{\sqrt a-\sqrt b}{\sqrt a+\sqrt b}\right)^2-\left(\frac{\sqrt a+\sqrt b}{\sqrt a-\sqrt b}-\frac{\sqrt a-\sqrt b}{\sqrt a+\sqrt b}\right)^2}[/inline], za [inline]a>b>0[/inline], jednaka je:
[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{\sqrt a+\sqrt b}{\sqrt a-\sqrt b}[/inline] [inline]\text{(B)}[/inline] [inline]\sqrt a-\sqrt b[/inline] [inline]\text{(C)}[/inline] [inline]2[/inline] [inline]\text{(D)}[/inline] [inline]\sqrt a+\sqrt b[/inline] [inline]\text{(E)}[/inline] [inline]0[/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{\sqrt a+\sqrt b}{\sqrt a-\sqrt b}[/inline] [inline]\text{(B)}[/inline] [inline]\sqrt a-\sqrt b[/inline] [inline]\enclose{circle}{\text{(C)}}[/inline] [inline]2[/inline] [inline]\text{(D)}[/inline] [inline]\sqrt a+\sqrt b[/inline] [inline]\text{(E)}[/inline] [inline]0[/inline] [inline]\text{(N)}[/inline] Ne znam
3.Link zadatka Vrednost izraza [inline]\displaystyle\text{tg }\frac{\pi}{8}+\sin\frac{\pi}{12}[/inline] jednaka je:
[inline]\text{(A)}[/inline] [inline]\displaystyle1-\frac{3-\sqrt3}{2\sqrt2}[/inline] [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{3+\sqrt3}{2\sqrt2}-1[/inline] [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{1}{\sqrt2+1}+\frac{\sqrt3+1}{2\sqrt2}[/inline] [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{1-\sqrt3}{2\sqrt2}+\frac{1}{\sqrt2-1}[/inline] [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{1-\sqrt3}{2\sqrt2}+\sqrt2-1[/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]\displaystyle1-\frac{3-\sqrt3}{2\sqrt2}[/inline] [inline]\enclose{circle}{\text{(B)}}[/inline] [inline]\displaystyle\frac{3+\sqrt3}{2\sqrt2}-1[/inline] [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{1}{\sqrt2+1}+\frac{\sqrt3+1}{2\sqrt2}[/inline] [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{1-\sqrt3}{2\sqrt2}+\frac{1}{\sqrt2-1}[/inline] [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{1-\sqrt3}{2\sqrt2}+\sqrt2-1[/inline] [inline]\text{(N)}[/inline] Ne znam
Obrađeno u temi: LINK
4.Link zadatka Neka su [inline]x>2[/inline] i [inline]y\lt-2[/inline] realni brojevi. Koja od sledećih tvrđenja su uvek tačna?
[inline]\displaystyle(i)\;\frac{x}{y}>1\qquad[/inline] [inline](ii)\;|x|^2>|y|^2\qquad[/inline] [inline](iii)\;\displaystyle x+\frac{3}{4}>2y+\frac{1}{2}\qquad[/inline] [inline](iv)\;x^2-1>y^2-2\qquad[/inline] [inline](v)\;\displaystyle\frac{1}{x^2}>\frac{1}{y^2}[/inline]
[inline]\text{(A)}[/inline] [inline](iii)[/inline] i [inline](iv)[/inline] [inline]\text{(B)}[/inline] Samo [inline](iv)[/inline] [inline]\text{(C)}[/inline] [inline](i)[/inline], [inline](ii)[/inline] i [inline](iv)[/inline] [inline]\text{(D)}[/inline] Samo [inline](iii)[/inline] [inline]\text{(E)}[/inline] [inline](ii)[/inline] i [inline](iii)[/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline](iii)[/inline] i [inline](iv)[/inline] [inline]\text{(B)}[/inline] Samo [inline](iv)[/inline] [inline]\text{(C)}[/inline] [inline](i)[/inline], [inline](ii)[/inline] i [inline](iv)[/inline] [inline]\enclose{circle}{\text{(D)}}[/inline] Samo [inline](iii)[/inline] [inline]\text{(E)}[/inline] [inline](ii)[/inline] i [inline](iii)[/inline] [inline]\text{(N)}[/inline] Ne znam
5.Link zadatka Ostatak pri deljenju polinoma [inline]P(x)=x^{2019}+2019[/inline] polinomom [inline]Q(x)=x^2+1[/inline] jeste polinom:
[inline]\text{(A)}[/inline] [inline]2018[/inline] [inline]\text{(B)}[/inline] [inline]2019x-1[/inline] [inline]\text{(C)}[/inline] [inline]x+2019[/inline] [inline]\text{(D)}[/inline] [inline]-x+2019[/inline] [inline]\text{(E)}[/inline] [inline]2020[/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]2018[/inline] [inline]\text{(B)}[/inline] [inline]2019x-1[/inline] [inline]\text{(C)}[/inline] [inline]x+2019[/inline] [inline]\enclose{circle}{\text{(D)}}[/inline] [inline]-x+2019[/inline] [inline]\text{(E)}[/inline] [inline]2020[/inline] [inline]\text{(N)}[/inline] Ne znam
6.Link zadatka Ako je [inline]f(x)=\text{tg }x-\text{ctg }x[/inline], onda je [inline]\displaystyle f'\left(\frac{\pi}{4}\right)[/inline] jednako:
[inline]\text{(A)}[/inline] [inline]-2[/inline] [inline]\text{(B)}[/inline] [inline]-4[/inline] [inline]\text{(C)}[/inline] [inline]2[/inline] [inline]\text{(D)}[/inline] [inline]4[/inline] [inline]\text{(E)}[/inline] [inline]0[/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]-2[/inline] [inline]\text{(B)}[/inline] [inline]-4[/inline] [inline]\text{(C)}[/inline] [inline]2[/inline] [inline]\enclose{circle}{\text{(D)}}[/inline] [inline]4[/inline] [inline]\text{(E)}[/inline] [inline]0[/inline] [inline]\text{(N)}[/inline] Ne znam
7.Link zadatka Ako su [inline]k_1[/inline] i [inline]k_2[/inline] koncentrični krugovi, pri čemu je tetiva dužine [inline]6\text{ cm}[/inline] većeg kruga istovremeno tangenta manjeg, kolika je površina kružnog prstena koji oni obrazuju?
[inline]\text{(A)}[/inline] [inline]12\pi\text{ cm}^2[/inline] [inline]\text{(B)}[/inline] [inline]3\pi\text{ cm}^2[/inline] [inline]\text{(C)}[/inline] [inline]4\pi\text{ cm}^2[/inline] [inline]\text{(D)}[/inline] [inline]36\pi\text{ cm}^2[/inline] [inline]\text{(E)}[/inline] [inline]9\pi\text{ cm}^2[/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]12\pi\text{ cm}^2[/inline] [inline]\text{(B)}[/inline] [inline]3\pi\text{ cm}^2[/inline] [inline]\text{(C)}[/inline] [inline]4\pi\text{ cm}^2[/inline] [inline]\text{(D)}[/inline] [inline]36\pi\text{ cm}^2[/inline] [inline]\enclose{circle}{\text{(E)}}[/inline] [inline]9\pi\text{ cm}^2[/inline] [inline]\text{(N)}[/inline] Ne znam
Obrađeno u temi: LINK
8.Link zadatka Neka su [inline]a[/inline], [inline]b[/inline] i [inline]c[/inline] dužine ivica kvadra, čija je zapremina [inline]8\text{ cm}^3[/inline], a površina [inline]32\text{ cm}^2[/inline]. Ako dužine ivica kvadra obrazuju geometrijsku progresiju, onda je [inline]a+b+c[/inline] jednako:
[inline]\text{(A)}[/inline] [inline]6\text{ cm}[/inline] [inline]\text{(B)}[/inline] [inline]\left(5+\sqrt5\right)\text{ cm}[/inline] [inline]\text{(C)}[/inline] [inline]8\text{ cm}[/inline] [inline]\text{(D)}[/inline] [inline]\left(5-\sqrt5\right)\text{ cm}[/inline] [inline]\text{(E)}[/inline] [inline]\left(3+\sqrt5\right)\text{ cm}[/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]6\text{ cm}[/inline] [inline]\text{(B)}[/inline] [inline]\left(5+\sqrt5\right)\text{ cm}[/inline] [inline]\enclose{circle}{\text{(C)}}[/inline] [inline]8\text{ cm}[/inline] [inline]\text{(D)}[/inline] [inline]\left(5-\sqrt5\right)\text{ cm}[/inline] [inline]\text{(E)}[/inline] [inline]\left(3+\sqrt5\right)\text{ cm}[/inline] [inline]\text{(N)}[/inline] Ne znam
9.Link zadatka Prava kupa upisana je u valjak tako da se njena osnova poklapa sa jednom osnovom valjka, a njen vrh je centar druge osnove valjka. Ako je izvodnica kupe nagnuta prema ravni osnove pod uglom od [inline]60^\circ[/inline], onda je odnos površine kupe i valjka jednak:
[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{3\left(\sqrt3+1\right)}{4}[/inline] [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{2}{2+\sqrt3}[/inline] [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{\sqrt3+1}{2}[/inline] [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{3\left(\sqrt3-1\right)}{4}[/inline] [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{\sqrt3-1}{2}[/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{3\left(\sqrt3+1\right)}{4}[/inline] [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{2}{2+\sqrt3}[/inline] [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{\sqrt3+1}{2}[/inline] [inline]\enclose{circle}{\text{(D)}}[/inline] [inline]\displaystyle\frac{3\left(\sqrt3-1\right)}{4}[/inline] [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{\sqrt3-1}{2}[/inline] [inline]\text{(N)}[/inline] Ne znam
10.Link zadatka Ako je [inline]\displaystyle z=\left(\frac{1+i\sqrt3}{2}\right)^{2019}[/inline], [inline]i^2=-1[/inline], onda je izraz [inline]\text{Re }z+\text{Im }z[/inline] jednak:
[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{\sqrt3+1}{2}[/inline] [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{\sqrt3-1}{2}[/inline] [inline]\text{(C)}[/inline] [inline]-1[/inline] [inline]\text{(D)}[/inline] [inline]1[/inline] [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{1-\sqrt3}{2}[/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{\sqrt3+1}{2}[/inline] [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{\sqrt3-1}{2}[/inline] [inline]\enclose{circle}{\text{(C)}}[/inline] [inline]-1[/inline] [inline]\text{(D)}[/inline] [inline]1[/inline] [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{1-\sqrt3}{2}[/inline] [inline]\text{(N)}[/inline] Ne znam
11.Link zadatka Grafici funkcija [inline]y=(a-3)x^2-2ax-4[/inline] i [inline]y=ax+5[/inline], [inline]a\in\mathbb{R}[/inline], nemaju zajedničkih tačaka ako i samo ako parametar [inline]a[/inline] pripada skupu:
[inline]\text{(A)}[/inline] [inline](-4,2)[/inline] [inline]\text{(B)}[/inline] [inline](-5,2)[/inline] [inline]\text{(C)}[/inline] [inline](-3,2)[/inline] [inline]\text{(D)}[/inline] [inline](-7,2)[/inline] [inline]\text{(E)}[/inline] [inline](-6,2)[/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline](-4,2)[/inline] [inline]\text{(B)}[/inline] [inline](-5,2)[/inline] [inline]\text{(C)}[/inline] [inline](-3,2)[/inline] [inline]\text{(D)}[/inline] [inline](-7,2)[/inline] [inline]\enclose{circle}{\text{(E)}}[/inline] [inline](-6,2)[/inline] [inline]\text{(N)}[/inline] Ne znam
12.Link zadatka Celobrojnih rešenja jednačine [inline]\sqrt{x+5-4\sqrt{x+1}}+\sqrt{x+2-2\sqrt{x+1}}=1[/inline] ima:
[inline]\text{(A)}[/inline] [inline]4[/inline] [inline]\text{(B)}[/inline] [inline]3[/inline] [inline]\text{(C)}[/inline] [inline]2[/inline] [inline]\text{(D)}[/inline] [inline]1[/inline] [inline]\text{(E)}[/inline] Beskonačno mnogo [inline]\text{(N)}[/inline] Ne znam[inline]\enclose{circle}{\text{(A)}}[/inline] [inline]4[/inline] [inline]\text{(B)}[/inline] [inline]3[/inline] [inline]\text{(C)}[/inline] [inline]2[/inline] [inline]\text{(D)}[/inline] [inline]1[/inline] [inline]\text{(E)}[/inline] Beskonačno mnogo [inline]\text{(N)}[/inline] Ne znam
13.Link zadatka Granična vrednost [inline]\displaystyle\lim_{x\to8}\left(\text{tg }\frac{2\pi}{x}\cdot\frac{x^2-16x+64}{x^2-9x+8}\cdot\frac{\sqrt{x^2-7x+1}+\sqrt[3]{x^2}}{\sqrt[3]x-2}\right)[/inline] jednaka je:
[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{12}{7}[/inline] [inline]\text{(B)}[/inline] [inline]0[/inline] [inline]\text{(C)}[/inline] [inline]12[/inline] [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{7}{12}[/inline] [inline]\text{(E)}[/inline] [inline]7[/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{12}{7}[/inline] [inline]\text{(B)}[/inline] [inline]0[/inline] [inline]\enclose{circle}{\text{(C)}}[/inline] [inline]12[/inline] [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{7}{12}[/inline] [inline]\text{(E)}[/inline] [inline]7[/inline] [inline]\text{(N)}[/inline] Ne znam
14.Link zadatka Ako je [inline]m[/inline] najmanja vrednost funkcije [inline]f(x)=(x-1)^2+(x-2)^2+(x-3)^2+\cdots+(x-2019)^2[/inline], onda [inline]m[/inline] pripada skupu:
[inline]\text{(A)}[/inline] [inline]\left(10^3,10^5\right][/inline] [inline]\text{(B)}[/inline] [inline]\left(10^6,10^7\right][/inline] [inline]\text{(C)}[/inline] [inline]\left(10^5,10^6\right][/inline] [inline]\text{(D)}[/inline] [inline]\left(10^7,+\infty\right)[/inline] [inline]\text{(E)}[/inline] [inline]\left(0,10^3\right][/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]\left(10^3,10^5\right][/inline] [inline]\text{(B)}[/inline] [inline]\left(10^6,10^7\right][/inline] [inline]\text{(C)}[/inline] [inline]\left(10^5,10^6\right][/inline] [inline]\enclose{circle}{\text{(D)}}[/inline] [inline]\left(10^7,+\infty\right)[/inline] [inline]\text{(E)}[/inline] [inline]\left(0,10^3\right][/inline] [inline]\text{(N)}[/inline] Ne znam
15.Link zadatka Prave [inline]t[/inline] i [inline]p[/inline] seku se u centru kružnice [inline]k[/inline]. Ugao između njih je [inline]\alpha[/inline]. Ako prava [inline]t[/inline] seče kružnicu [inline]k[/inline] u tačkama [inline]T[/inline] i [inline]S[/inline], a prava [inline]p[/inline] seče kružnicu [inline]k[/inline] u tačkama [inline]P[/inline] i [inline]Q[/inline], površina četvorougla [inline]TPSQ[/inline] maksimalna je ukoliko je ugao [inline]\alpha[/inline] jednak:
[inline]\text{(A)}[/inline] [inline]60^\circ[/inline] [inline]\text{(B)}[/inline] [inline]45^\circ[/inline] [inline]\text{(C)}[/inline] [inline]30^\circ[/inline] [inline]\text{(D)}[/inline] [inline]15^\circ[/inline] [inline]\text{(E)}[/inline] [inline]90^\circ[/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]60^\circ[/inline] [inline]\text{(B)}[/inline] [inline]45^\circ[/inline] [inline]\text{(C)}[/inline] [inline]30^\circ[/inline] [inline]\text{(D)}[/inline] [inline]15^\circ[/inline] [inline]\enclose{circle}{\text{(E)}}[/inline] [inline]90^\circ[/inline] [inline]\text{(N)}[/inline] Ne znam
16.Link zadatka U binomnom razvoju [inline]\left(\sqrt[3]7+\sqrt[7]3\right)^{2019}[/inline] broj članova koji su celi brojevi jednak je:
[inline]\text{(A)}[/inline] [inline]289[/inline] [inline]\text{(B)}[/inline] [inline]97[/inline] [inline]\text{(C)}[/inline] [inline]288[/inline] [inline]\text{(D)}[/inline] [inline]674[/inline] [inline]\text{(E)}[/inline] [inline]96[/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]289[/inline] [inline]\enclose{circle}{\text{(B)}}[/inline] [inline]97[/inline] [inline]\text{(C)}[/inline] [inline]288[/inline] [inline]\text{(D)}[/inline] [inline]674[/inline] [inline]\text{(E)}[/inline] [inline]96[/inline] [inline]\text{(N)}[/inline] Ne znam
17.Link zadatka Broj realnih rešenja jednačine [inline]x=3\pi\cos x[/inline] jeste:
[inline]\text{(A)}[/inline] [inline]5[/inline] [inline]\text{(B)}[/inline] [inline]6[/inline] [inline]\text{(C)}[/inline] [inline]3[/inline] [inline]\text{(D)}[/inline] [inline]4[/inline] [inline]\text{(E)}[/inline] [inline]2[/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]5[/inline] [inline]\text{(B)}[/inline] [inline]6[/inline] [inline]\text{(C)}[/inline] [inline]3[/inline] [inline]\text{(D)}[/inline] [inline]4[/inline] [inline]\text{(E)}[/inline] [inline]2[/inline] [inline]\text{(N)}[/inline] Ne znam
Iako je tačno rešenje [inline]7[/inline], kojeg nema među ponuđenima, kandidatima je odgovor [inline]6[/inline] priznat kao tačan. Opširnije
Obrađeno u temi: LINK
18.Link zadatka Od svih tačaka koje pripadaju krivoj [inline]2x^2+y^2-24(x-y)+208=0[/inline] tačka [inline]M(x_0,y_0)[/inline] ima najveću apsolutnu vrednost ordinate. Tada je [inline]2x_0+y_0[/inline] jednako:
[inline]\text{(A)}[/inline] [inline]-12+\sqrt8[/inline] [inline]\text{(B)}[/inline] [inline]-2\sqrt2[/inline] [inline]\text{(C)}[/inline] [inline]\sqrt8[/inline] [inline]\text{(D)}[/inline] [inline]24+\sqrt8[/inline] [inline]\text{(E)}[/inline] [inline]-2[/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]-12+\sqrt8[/inline] [inline]\enclose{circle}{\text{(B)}}[/inline] [inline]-2\sqrt2[/inline] [inline]\text{(C)}[/inline] [inline]\sqrt8[/inline] [inline]\text{(D)}[/inline] [inline]24+\sqrt8[/inline] [inline]\text{(E)}[/inline] [inline]-2[/inline] [inline]\text{(N)}[/inline] Ne znam
Obrađeno u temi: LINK
19.Link zadatka Koliko ima prirodnih brojeva manjih od [inline]2019[/inline] čije su cifre u strogo rastućem poretku?
[inline]\text{(A)}[/inline] [inline]205[/inline] [inline]\text{(B)}[/inline] [inline]195[/inline] [inline]\text{(C)}[/inline] [inline]185[/inline] [inline]\text{(D)}[/inline] [inline]182[/inline] [inline]\text{(E)}[/inline] [inline]213[/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline]205[/inline] [inline]\text{(B)}[/inline] [inline]195[/inline] [inline]\enclose{circle}{\text{(C)}}[/inline] [inline]185[/inline] [inline]\text{(D)}[/inline] [inline]182[/inline] [inline]\text{(E)}[/inline] [inline]213[/inline] [inline]\text{(N)}[/inline] Ne znam
20.Link zadatka Skup rešenja nejednačine [inline]\displaystyle5\cdot\left(\frac{1}{25}\right)^{\sin^2x}+4\cdot5^{\cos(2x)}>25^{\sin x\cos x}[/inline] na segmentu [inline]\displaystyle\left[-\frac{\pi}{2},\frac{3\pi}{2}\right][/inline] jeste oblika (za neke realne brojeve [inline]a,b,c,d[/inline] takve da je [inline]\displaystyle-\frac{\pi}{2}\le a\lt b\lt c\lt d\le\frac{3\pi}{2}[/inline]):
[inline]\text{(A)}[/inline] [inline](a,b)\cup(b,c)[/inline] [inline]\text{(B)}[/inline] [inline][a,b)\cup(b,c][/inline] [inline]\text{(C)}[/inline] [inline](a,b)\cup[c,d)[/inline] [inline]\text{(D)}[/inline] [inline][a,b)\cup(c,d][/inline] [inline]\text{(E)}[/inline] [inline](a,b)\cup(c,d)[/inline] [inline]\text{(N)}[/inline] Ne znam[inline]\text{(A)}[/inline] [inline](a,b)\cup(b,c)[/inline] [inline]\text{(B)}[/inline] [inline][a,b)\cup(b,c][/inline] [inline]\text{(C)}[/inline] [inline](a,b)\cup[c,d)[/inline] [inline]\text{(D)}[/inline] [inline][a,b)\cup(c,d][/inline] [inline]\enclose{circle}{\text{(E)}}[/inline] [inline](a,b)\cup(c,d)[/inline] [inline]\text{(N)}[/inline] Ne znam
Napomena: Ukoliko vam treba pomoć oko rešavanja nekog od zadataka koji dosad nije obrađivan ni na jednoj temi, slobodno zatražite pomoć na forumu „Matemanija“, naravno uz poštovanje forumskih pravila.