ETF MATF FON GRF FORUM

Prijemni ispit na Fakultetu organizacionih nauka u Beogradu

29. jun 2010.


Test ima [inline]20[/inline] zadataka na [inline]2[/inline] stranice. Svi zadaci se vrednuju sa po [inline]5[/inline] poena. Ukoliko ne želite da se opredelite za jedan od prvih pet ponuđenih odgovora možete da zaokružite „N)“, što se vrednuje sa [inline]0[/inline] poena. Za pogrešan odgovor se oduzima [inline]0.5[/inline] poena. Ako se, za konkretan zadatak, zaokruži više od jednog ili ako se na bilo koji način nepravilno označi odgovor, kao i ako se ne zaokruži ni jedan odgovor, oduzima se [inline]1[/inline] poen.

1.Link zadatka Vrednost izraza [inline]\displaystyle\left[\left(3-\frac{3}{7}\right)^{-1}:\frac{1}{3}+\frac{2}{3\sqrt{(-2)^2}}\right]^{-1/2}\cdot\left[\left(\frac{2}{5}\right)^{-2}-0.25\right]^{1/2}[/inline] jednaka je:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{\sqrt6}{5}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\sqrt\frac{2}{3}[/inline];      [inline]\text{C)}[/inline] [inline]2[/inline];      [inline]\text{D)}[/inline] [inline]3[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{6}{\sqrt5}[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]\displaystyle\frac{\sqrt6}{5}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\sqrt\frac{2}{3}[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]2[/inline];      [inline]\text{D)}[/inline] [inline]3[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{6}{\sqrt5}[/inline];              [inline]\text{N)}[/inline] Ne znam.

2.Link zadatka Ako je [inline]a\in\mathbb{R}\setminus\{-1,-2,1,2\}[/inline], onda je izraz [inline]\displaystyle\frac{a^3+1}{a^2+3a+2}\cdot\left(\frac{a^2-a+1}{a-1}\right)^{-1}+\frac{a^2+8}{4-a^2}[/inline] identički jednak izrazu:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{3}{2+a}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{3}{2-a}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle-\frac{3}{2+a}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{3}{1+a}[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{3}{1-a}[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]\displaystyle\frac{3}{2+a}[/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]\displaystyle\frac{3}{2-a}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle-\frac{3}{2+a}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{3}{1+a}[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{3}{1-a}[/inline];              [inline]\text{N)}[/inline] Ne znam.

3.Link zadatka Posle poskupljenja od [inline]15\%[/inline] knjiga [inline]A[/inline] je koštala [inline]345[/inline], a knjiga [inline]B[/inline] [inline]414[/inline] dinara. Odnos cena knjige [inline]A[/inline] i knjige [inline]B[/inline], pre poskupljenja, bio je:
[inline]\text{A)}[/inline] [inline]4:5[/inline];      [inline]\text{B)}[/inline] [inline]5:6[/inline];      [inline]\text{C)}[/inline] [inline]6:7[/inline];      [inline]\text{D)}[/inline] [inline]7:8[/inline];      [inline]\text{E)}[/inline] [inline]8:9[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]4:5[/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]5:6[/inline];      [inline]\text{C)}[/inline] [inline]6:7[/inline];      [inline]\text{D)}[/inline] [inline]7:8[/inline];      [inline]\text{E)}[/inline] [inline]8:9[/inline];              [inline]\text{N)}[/inline] Ne znam.

4.Link zadatka Površina romba je [inline]24\text{ cm}^2[/inline], a veća dijagonala romba je za [inline]2\text{ cm}[/inline] duža od kraće dijagonale. Obim tog romba je:
[inline]\text{A)}[/inline] [inline]32\text{ cm}[/inline];      [inline]\text{B)}[/inline] [inline]28\text{ cm}[/inline];      [inline]\text{C)}[/inline] [inline]24\text{ cm}[/inline];      [inline]\text{D)}[/inline] [inline]20\text{ cm}[/inline];      [inline]\text{E)}[/inline] [inline]16\text{ cm}[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]32\text{ cm}[/inline];      [inline]\text{B)}[/inline] [inline]28\text{ cm}[/inline];      [inline]\text{C)}[/inline] [inline]24\text{ cm}[/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline]20\text{ cm}[/inline];      [inline]\text{E)}[/inline] [inline]16\text{ cm}[/inline];              [inline]\text{N)}[/inline] Ne znam.

5.Link zadatka Vrednost izraza [inline]\displaystyle\frac{i^{2010}-i^{2011}}{i^{2010}-i^{2009}}[/inline], gde je [inline]i^2=-1[/inline], jednaka je:
[inline]\text{A)}[/inline] [inline]-1+i[/inline];      [inline]\text{B)}[/inline] [inline]-1-i[/inline];      [inline]\text{C)}[/inline] [inline]1+i[/inline];      [inline]\text{D)}[/inline] [inline]i[/inline];      [inline]\text{E)}[/inline] [inline]-i[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]-1+i[/inline];      [inline]\text{B)}[/inline] [inline]-1-i[/inline];      [inline]\text{C)}[/inline] [inline]1+i[/inline];      [inline]\text{D)}[/inline] [inline]i[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]-i[/inline];              [inline]\text{N)}[/inline] Ne znam.

6.Link zadatka Ako je [inline]\displaystyle f\left(\frac{1}{x}\right)=x^2+\frac{1}{x^3}[/inline] i [inline]\displaystyle g(x)=\frac{1}{2}\bigl(f(x)+f(-x)\bigr)[/inline], gde je [inline]x\ne0[/inline], onda je:
[inline]\text{A)}[/inline] [inline]g(x)=x^2[/inline];      [inline]\text{B)}[/inline] [inline]g(x)=x^3[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle g(x)=\frac{1}{x^2}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle g(x)=\frac{1}{x^3}[/inline];      [inline]\text{E)}[/inline] [inline]g(x)=0[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]g(x)=x^2[/inline];      [inline]\text{B)}[/inline] [inline]g(x)=x^3[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]\displaystyle g(x)=\frac{1}{x^2}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle g(x)=\frac{1}{x^3}[/inline];      [inline]\text{E)}[/inline] [inline]g(x)=0[/inline];              [inline]\text{N)}[/inline] Ne znam.

7.Link zadatka Ako je [inline]a=\log_2\sqrt[4]{1024}+2^{2\log_4\frac{3}{2}}[/inline], onda je [inline]a^{3-a}[/inline] jednako:
[inline]\text{A)}[/inline] [inline]2[/inline];      [inline]\text{B)}[/inline] [inline]1[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{1}{4}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{1}{25}[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{1}{216}[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]2[/inline];      [inline]\text{B)}[/inline] [inline]1[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]\displaystyle\frac{1}{4}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{1}{25}[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{1}{216}[/inline];              [inline]\text{N)}[/inline] Ne znam.

8.Link zadatka Broj svih celobrojnih rešenja nejednačine [inline]\displaystyle\frac{2x^2-5x-9}{x^2-2x+1}\lt1[/inline] je:
[inline]\text{A)}[/inline] [inline]2[/inline];      [inline]\text{B)}[/inline] [inline]3[/inline];      [inline]\text{C)}[/inline] [inline]4[/inline];      [inline]\text{D)}[/inline] [inline]5[/inline];      [inline]\text{E)}[/inline] [inline]6[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]2[/inline];      [inline]\text{B)}[/inline] [inline]3[/inline];      [inline]\text{C)}[/inline] [inline]4[/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline]5[/inline];      [inline]\text{E)}[/inline] [inline]6[/inline];              [inline]\text{N)}[/inline] Ne znam.

9.Link zadatka Date su tačke [inline]A(7,-1)[/inline], [inline]B(2,3)[/inline] i prava [inline]p\colon4x+y=1[/inline]. Jednačina prave koja sadrži središte duži [inline]AB[/inline] i paralelna je pravoj [inline]p[/inline] je:
[inline]\text{A)}[/inline] [inline]2x-8y-1=0[/inline];      [inline]\text{B)}[/inline] [inline]4x+5y-23=0[/inline];      [inline]\text{C)}[/inline] [inline]4x+y-27=0[/inline];      [inline]\text{D)}[/inline] [inline]4x+y-11=0[/inline];      [inline]\text{E)}[/inline] [inline]4x+y-19=0[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]2x-8y-1=0[/inline];      [inline]\text{B)}[/inline] [inline]4x+5y-23=0[/inline];      [inline]\text{C)}[/inline] [inline]4x+y-27=0[/inline];      [inline]\text{D)}[/inline] [inline]4x+y-11=0[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]4x+y-19=0[/inline];              [inline]\text{N)}[/inline] Ne znam.

10.Link zadatka Realno rešenje jednačine [inline]125\cdot5^{2x-2}-20\cdot5^{x-1}=1[/inline] pripada intervalu:
[inline]\text{A)}[/inline] [inline](-2,-1][/inline];      [inline]\text{B)}[/inline] [inline](-1,0][/inline];      [inline]\text{C)}[/inline] [inline](0,1][/inline];      [inline]\text{D)}[/inline] [inline](1,2][/inline];      [inline]\text{E)}[/inline] [inline](2,3][/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline](-2,-1][/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline](-1,0][/inline];      [inline]\text{C)}[/inline] [inline](0,1][/inline];      [inline]\text{D)}[/inline] [inline](1,2][/inline];      [inline]\text{E)}[/inline] [inline](2,3][/inline];              [inline]\text{N)}[/inline] Ne znam.

11.Link zadatka Ako je polinom [inline]P(x)=x^4+ax^3+3x^2+bx-6[/inline] deljiv polinomom [inline]Q(x)=(x-1)(x+3)[/inline], onda je zbir [inline]a^2+b^2[/inline] jednak:
[inline]\text{A)}[/inline] [inline]20[/inline];      [inline]\text{B)}[/inline] [inline]10[/inline];      [inline]\text{C)}[/inline] [inline]41[/inline];      [inline]\text{D)}[/inline] [inline]25[/inline];      [inline]\text{E)}[/inline] [inline]50[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\enclose{circle}{\text{A)}}[/inline] [inline]20[/inline];      [inline]\text{B)}[/inline] [inline]10[/inline];      [inline]\text{C)}[/inline] [inline]41[/inline];      [inline]\text{D)}[/inline] [inline]25[/inline];      [inline]\text{E)}[/inline] [inline]50[/inline];              [inline]\text{N)}[/inline] Ne znam.

12.Link zadatka Ako je [inline]\displaystyle\cos2\alpha=\frac{\sqrt3}{3}[/inline], onda je vrednost izraza [inline]\sin^4\alpha+\cos^4\alpha[/inline] jednaka:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{2}{3}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{3}{4}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{4}{5}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{5}{6}[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{6}{7}[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\enclose{circle}{\text{A)}}[/inline] [inline]\displaystyle\frac{2}{3}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{3}{4}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{4}{5}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{5}{6}[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{6}{7}[/inline];              [inline]\text{N)}[/inline] Ne znam.

Obrađeno u temama: LINK1 LINK2

13.Link zadatka U razvoju [inline]\displaystyle\left(\sqrt3+\frac{1}{\sqrt3}\right)^n[/inline], ([inline]n\in\mathbb{N}[/inline]) odnos trećeg i petog člana razvoja jednak je [inline]6:5[/inline]. Zbir svih binomnih koeficijenata u tom razvoju jednak je:
[inline]\text{A)}[/inline] [inline]8192[/inline];      [inline]\text{B)}[/inline] [inline]8^3[/inline];      [inline]\text{C)}[/inline] [inline]4^6[/inline];      [inline]\text{D)}[/inline] [inline]2048[/inline];      [inline]\text{E)}[/inline] [inline]1024[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]8192[/inline];      [inline]\text{B)}[/inline] [inline]8^3[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]4^6[/inline];      [inline]\text{D)}[/inline] [inline]2048[/inline];      [inline]\text{E)}[/inline] [inline]1024[/inline];              [inline]\text{N)}[/inline] Ne znam.

Obrađeno u temi: LINK

14.Link zadatka Zbir prvog i drugog člana rastuće geometrijske progresije je devet puta manji od zbira trećeg i četvrtog člana. Ako je prvi član progresije jednak [inline]3^{-2010}[/inline], onda je [inline]2010[/inline]-ti član te progresije jednak:
[inline]\text{A)}[/inline] [inline]1[/inline];      [inline]\text{B)}[/inline] [inline]9[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{1}{9}[/inline];      [inline]\text{D)}[/inline] [inline]3[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{1}{3}[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]1[/inline];      [inline]\text{B)}[/inline] [inline]9[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{1}{9}[/inline];      [inline]\text{D)}[/inline] [inline]3[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]\displaystyle\frac{1}{3}[/inline];              [inline]\text{N)}[/inline] Ne znam.

Obrađeno u temi: LINK

15.Link zadatka Skup rešenja nejednačine [inline]\sqrt{4+7x-2x^2}\lt2x+1[/inline] je:
[inline]\text{A)}[/inline] [inline](-1/2,4][/inline];      [inline]\text{B)}[/inline] [inline](0,4][/inline];      [inline]\text{C)}[/inline] [inline](1,4][/inline];      [inline]\text{D)}[/inline] [inline](2,4][/inline];      [inline]\text{E)}[/inline] [inline](3,4][/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline](-1/2,4][/inline];      [inline]\text{B)}[/inline] [inline](0,4][/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline](1,4][/inline];      [inline]\text{D)}[/inline] [inline](2,4][/inline];      [inline]\text{E)}[/inline] [inline](3,4][/inline];              [inline]\text{N)}[/inline] Ne znam.

Obrađeno u temi: LINK

16.Link zadatka Površina pravog valjka je [inline]320\pi\text{ cm}^2[/inline], a visina valjka je za [inline]4\text{ cm}[/inline] veća od poluprečnika osnove. Zapremina valjka je:
[inline]\text{A)}[/inline] [inline]192\pi\text{ cm}^3[/inline];      [inline]\text{B)}[/inline] [inline]1152\pi\text{ cm}^3[/inline];      [inline]\text{C)}[/inline] [inline]576\pi\text{ cm}^3[/inline];      [inline]\text{D)}[/inline] [inline]768\pi\text{ cm}^3[/inline];      [inline]\text{E)}[/inline] [inline]256\pi\text{ cm}^3[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]192\pi\text{ cm}^3[/inline];      [inline]\text{B)}[/inline] [inline]1152\pi\text{ cm}^3[/inline];      [inline]\text{C)}[/inline] [inline]576\pi\text{ cm}^3[/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline]768\pi\text{ cm}^3[/inline];      [inline]\text{E)}[/inline] [inline]256\pi\text{ cm}^3[/inline];              [inline]\text{N)}[/inline] Ne znam.

17.Link zadatka Broj svih permutacija cifara [inline]1,2,\ldots,9[/inline] u kojima je bar jedna od prve tri cifre deljiva sa [inline]3[/inline] jednak je:
[inline]\text{A)}[/inline] [inline]120\cdot6![/inline];      [inline]\text{B)}[/inline] [inline]384\cdot6![/inline];      [inline]\text{C)}[/inline] [inline]9\cdot8![/inline];      [inline]\text{D)}[/inline] [inline]9!-6\cdot6![/inline];      [inline]\text{E)}[/inline] [inline]9!-6![/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]120\cdot6![/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]384\cdot6![/inline];      [inline]\text{C)}[/inline] [inline]9\cdot8![/inline];      [inline]\text{D)}[/inline] [inline]9!-6\cdot6![/inline];      [inline]\text{E)}[/inline] [inline]9!-6![/inline];              [inline]\text{N)}[/inline] Ne znam.

Obrađeno u temi: LINK

18.Link zadatka Sva realna rešenja jednačine [inline]\log_3\left(\sqrt{2x+1}+3\right)=5\log_3\sqrt[5]{10-x}[/inline] pripadaju skupu:
[inline]\text{A)}[/inline] [inline]\{8,10,12\}[/inline];      [inline]\text{B)}[/inline] [inline]\{5,7,9\}[/inline];      [inline]\text{C)}[/inline] [inline]\{6,9,12\}[/inline];      [inline]\text{D)}[/inline] [inline]\{7,9,11\}[/inline];      [inline]\text{E)}[/inline] [inline]\{4,6,8\}[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]\{8,10,12\}[/inline];      [inline]\text{B)}[/inline] [inline]\{5,7,9\}[/inline];      [inline]\text{C)}[/inline] [inline]\{6,9,12\}[/inline];      [inline]\text{D)}[/inline] [inline]\{7,9,11\}[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]\{4,6,8\}[/inline];              [inline]\text{N)}[/inline] Ne znam.

Obrađeno u temi: LINK

19.Link zadatka Data je jednačina [inline]\sin5x-\sin x+3\cos3x=0[/inline]. Zbir kvadrata najmanjeg pozitivnog i najvećeg negativnog rešenja te jednačine je:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{2\pi^2}{9}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{\pi^2}{18}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{\pi^2}{8}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{5\pi^2}{18}[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{13\pi^2}{16}[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]\displaystyle\frac{2\pi^2}{9}[/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]\displaystyle\frac{\pi^2}{18}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{\pi^2}{8}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{5\pi^2}{18}[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{13\pi^2}{16}[/inline];              [inline]\text{N)}[/inline] Ne znam.

Obrađeno u temi: LINK

20.Link zadatka Dužina osnovice [inline]AB[/inline] jednakokrakog trougla [inline]ABC[/inline] jednaka je [inline]2\sqrt3\text{ cm}[/inline], a ugao na osnovici jednak je [inline]30^\circ[/inline]. U trougao [inline]ABC[/inline] je upisan pravougaonik [inline]MNPQ[/inline] maksimalne površine tako da [inline]M,N\in AB[/inline]. Površina tog pravougaonika je:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{\sqrt3}{2}\text{ cm}^2[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{\sqrt3}{3}\text{ cm}^2[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{3\sqrt3}{4}\text{ cm}^2[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{\sqrt3}{6}\text{ cm}^2[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{5\sqrt3}{8}\text{ cm}^2[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\enclose{circle}{\text{A)}}[/inline] [inline]\displaystyle\frac{\sqrt3}{2}\text{ cm}^2[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{\sqrt3}{3}\text{ cm}^2[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{3\sqrt3}{4}\text{ cm}^2[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{\sqrt3}{6}\text{ cm}^2[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{5\sqrt3}{8}\text{ cm}^2[/inline];              [inline]\text{N)}[/inline] Ne znam.


Izvor: LINK


Napomena: Ukoliko vam treba pomoć oko rešavanja nekog od zadataka koji dosad nije obrađivan ni na jednoj temi, slobodno zatražite pomoć na forumu „Matemanija“, naravno uz poštovanje forumskih pravila.