1.Link zadatka Vrednost izraza [inline]\displaystyle\frac{\left(\sqrt{2^4}+\sqrt[3]{2^6}\right)\cdot2^{-1}+\left(-3\right)^2-1}{\sqrt{\left(-2\right)^2}-\sqrt[5]{\left(-2\right)^5}}[/inline] jednaka je:
[inline]\text{A)}[/inline] [inline]5[/inline]; [inline]\text{B)}[/inline] [inline]\displaystyle\frac{1}{2}[/inline]; [inline]\text{C)}[/inline] [inline]3[/inline]; [inline]\text{D)}[/inline] [inline]1[/inline]; [inline]\text{E)}[/inline] [inline]\displaystyle\frac{1}{4}[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]5[/inline]; [inline]\text{B)}[/inline] [inline]\displaystyle\frac{1}{2}[/inline]; [inline]\enclose{circle}{\text{C)}}[/inline] [inline]3[/inline]; [inline]\text{D)}[/inline] [inline]1[/inline]; [inline]\text{E)}[/inline] [inline]\displaystyle\frac{1}{4}[/inline]; [inline]\text{N)}[/inline] Ne znam.
2.Link zadatka Nakon dva poskupljenja, najpre za [inline]20\%[/inline] a zatim za [inline]30\%[/inline], cena udžbenika iz matematike iznosi [inline]1482[/inline] dinara. Cena udžbenika pre navedenih poskupljenja iznosila je:
[inline]\text{A)}[/inline] [inline]1000[/inline] dinara; [inline]\text{B)}[/inline] [inline]900[/inline] dinara; [inline]\text{C)}[/inline] [inline]925[/inline] dinara; [inline]\text{D)}[/inline] [inline]975[/inline] dinara; [inline]\text{E)}[/inline] [inline]950[/inline] dinara; [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]1000[/inline] dinara; [inline]\text{B)}[/inline] [inline]900[/inline] dinara; [inline]\text{C)}[/inline] [inline]925[/inline] dinara; [inline]\text{D)}[/inline] [inline]975[/inline] dinara; [inline]\enclose{circle}{\text{E)}}[/inline] [inline]950[/inline] dinara; [inline]\text{N)}[/inline] Ne znam.
3.Link zadatka Neka je [inline]\displaystyle f\left(x\right)=\frac{x+2}{x-2}[/inline] za [inline]x\ne2[/inline] i [inline]g\left(x\right)=f\bigl(f\left(x\right)\bigr)+f\left(x-4\right)[/inline] za [inline]x\ne6[/inline]. Tada je:
[inline]\text{A)}[/inline] [inline]\displaystyle g\left(x\right)=\frac{x-2}{x-6}[/inline]; [inline]\text{B)}[/inline] [inline]\displaystyle g\left(x\right)=\frac{2x}{6-x}[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle g\left(x\right)=\frac{2x}{x-6}[/inline]; [inline]\text{D)}[/inline] [inline]\displaystyle g\left(x\right)=\frac{x-2}{6-x}[/inline]; [inline]\text{E)}[/inline] [inline]\displaystyle g\left(x\right)=\frac{3x-2}{6-x}[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]\displaystyle g\left(x\right)=\frac{x-2}{x-6}[/inline]; [inline]\enclose{circle}{\text{B)}}[/inline] [inline]\displaystyle g\left(x\right)=\frac{2x}{6-x}[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle g\left(x\right)=\frac{2x}{x-6}[/inline]; [inline]\text{D)}[/inline] [inline]\displaystyle g\left(x\right)=\frac{x-2}{6-x}[/inline]; [inline]\text{E)}[/inline] [inline]\displaystyle g\left(x\right)=\frac{3x-2}{6-x}[/inline]; [inline]\text{N)}[/inline] Ne znam.
4.Link zadatka Ako kompleksan broj [inline]z[/inline] zadovoljava jednačinu [inline]2z+\overline z+\left|z+3i\right|=16-3i[/inline], gde je [inline]i^2=-1[/inline], tada je:
[inline]\text{A)}[/inline] [inline]\left|z\right|=2\sqrt3[/inline]; [inline]\text{B)}[/inline] [inline]\left|z\right|=4[/inline]; [inline]\text{C)}[/inline] [inline]\left|z\right|=3[/inline]; [inline]\text{D)}[/inline] [inline]\left|z\right|=3\sqrt3[/inline]; [inline]\text{E)}[/inline] [inline]\left|z\right|=5[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]\left|z\right|=2\sqrt3[/inline]; [inline]\text{B)}[/inline] [inline]\left|z\right|=4[/inline]; [inline]\text{C)}[/inline] [inline]\left|z\right|=3[/inline]; [inline]\text{D)}[/inline] [inline]\left|z\right|=3\sqrt3[/inline]; [inline]\enclose{circle}{\text{E)}}[/inline] [inline]\left|z\right|=5[/inline]; [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK
5.Link zadatka Za [inline]a>0[/inline], [inline]b>0[/inline] i [inline]a\ne b[/inline], izraz [inline]\displaystyle\left(\frac{a+\sqrt{ab}+b}{\left(\sqrt a^3-\sqrt b^3\right)\left(\sqrt a+\sqrt b\right)}+\frac{1}{a+b}\right):\frac{ab}{a^2-b^2}[/inline] identički je jednak izrazu:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{2}{b}[/inline]; [inline]\text{B)}[/inline] [inline]\displaystyle\frac{1}{a}[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle\frac{1}{b}[/inline]; [inline]\text{D)}[/inline] [inline]\displaystyle\frac{2}{ab}[/inline]; [inline]\text{E)}[/inline] [inline]\displaystyle\frac{2}{a}[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\enclose{circle}{\text{A)}}[/inline] [inline]\displaystyle\frac{2}{b}[/inline]; [inline]\text{B)}[/inline] [inline]\displaystyle\frac{1}{a}[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle\frac{1}{b}[/inline]; [inline]\text{D)}[/inline] [inline]\displaystyle\frac{2}{ab}[/inline]; [inline]\text{E)}[/inline] [inline]\displaystyle\frac{2}{a}[/inline]; [inline]\text{N)}[/inline] Ne znam.
6.Link zadatka Ako rešenja [inline]x_1[/inline] i [inline]x_2[/inline] jednačine [inline]4x^2-2mx+m-3=0[/inline] zadovoljavaju jednakost [inline]\displaystyle\frac{1}{x_1^2}+\frac{1}{x_2^2}=4[/inline], onda vrednost parametra [inline]m[/inline] pripada intervalu:
[inline]\text{A)}[/inline] [inline]\left(3,4\right)[/inline]; [inline]\text{B)}[/inline] [inline]\left(0,1\right)[/inline]; [inline]\text{C)}[/inline] [inline]\left(4,5\right)[/inline]; [inline]\text{D)}[/inline] [inline]\left(2,3\right)[/inline]; [inline]\text{E)}[/inline] [inline]\left(1,2\right)[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]\left(3,4\right)[/inline]; [inline]\enclose{circle}{\text{B)}}[/inline] [inline]\left(0,1\right)[/inline]; [inline]\text{C)}[/inline] [inline]\left(4,5\right)[/inline]; [inline]\text{D)}[/inline] [inline]\left(2,3\right)[/inline]; [inline]\text{E)}[/inline] [inline]\left(1,2\right)[/inline]; [inline]\text{N)}[/inline] Ne znam.
7.Link zadatka Paralelne stranice kvadrata pripadaju pravama [inline]4x-3y+15=0[/inline] i [inline]8x-6y+21=0[/inline]. Dužina dijagonale tog kvadrata jednaka je:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{9\sqrt2}{10}[/inline]; [inline]\text{B)}[/inline] [inline]\sqrt2[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle\frac{4}{3}[/inline]; [inline]\text{D)}[/inline] [inline]\displaystyle\frac{4\sqrt2}{5}[/inline]; [inline]\text{E)}[/inline] [inline]\displaystyle\frac{3}{2}[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\enclose{circle}{\text{A)}}[/inline] [inline]\displaystyle\frac{9\sqrt2}{10}[/inline]; [inline]\text{B)}[/inline] [inline]\sqrt2[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle\frac{4}{3}[/inline]; [inline]\text{D)}[/inline] [inline]\displaystyle\frac{4\sqrt2}{5}[/inline]; [inline]\text{E)}[/inline] [inline]\displaystyle\frac{3}{2}[/inline]; [inline]\text{N)}[/inline] Ne znam.
8.Link zadatka Ostatak koji se dobija deljenjem polinoma [inline]P\left(x\right)=x^{2016}-x^{2015}-1[/inline] polinomom [inline]x^2+1[/inline] jednak je:
[inline]\text{A)}[/inline] [inline]x+1[/inline]; [inline]\text{B)}[/inline] [inline]x[/inline]; [inline]\text{C)}[/inline] [inline]-x+1[/inline]; [inline]\text{D)}[/inline] [inline]1[/inline]; [inline]\text{E)}[/inline] [inline]-x[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]x+1[/inline]; [inline]\enclose{circle}{\text{B)}}[/inline] [inline]x[/inline]; [inline]\text{C)}[/inline] [inline]-x+1[/inline]; [inline]\text{D)}[/inline] [inline]1[/inline]; [inline]\text{E)}[/inline] [inline]-x[/inline]; [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK
9.Link zadatka Ako je [inline]a=\log_2\sqrt[5]{64}-\sqrt2^{\log_85}[/inline], onda je vrednost izraza [inline]\displaystyle\left(a-\frac{6}{5}\right)^6[/inline] jednaka:
[inline]\text{A)}[/inline] [inline]5[/inline]; [inline]\text{B)}[/inline] [inline]1[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle\frac{1}{5}[/inline]; [inline]\text{D)}[/inline] [inline]\displaystyle\frac{1}{25}[/inline]; [inline]\text{E)}[/inline] [inline]25[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\enclose{circle}{\text{A)}}[/inline] [inline]5[/inline]; [inline]\text{B)}[/inline] [inline]1[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle\frac{1}{5}[/inline]; [inline]\text{D)}[/inline] [inline]\displaystyle\frac{1}{25}[/inline]; [inline]\text{E)}[/inline] [inline]25[/inline]; [inline]\text{N)}[/inline] Ne znam.
10.Link zadatka Broj svih celobrojnih rešenja nejednačine [inline]\left(\sqrt5+2\right)^x+\left(\sqrt5-2\right)^x\le2\sqrt5[/inline] jednak je:
[inline]\text{A)}[/inline] [inline]4[/inline]; [inline]\text{B)}[/inline] [inline]5[/inline]; [inline]\text{C)}[/inline] [inline]1[/inline]; [inline]\text{D)}[/inline] [inline]7[/inline]; [inline]\text{E)}[/inline] [inline]3[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]4[/inline]; [inline]\text{B)}[/inline] [inline]5[/inline]; [inline]\text{C)}[/inline] [inline]1[/inline]; [inline]\text{D)}[/inline] [inline]7[/inline]; [inline]\enclose{circle}{\text{E)}}[/inline] [inline]3[/inline]; [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK
11.Link zadatka Zbir najvećeg negativnog i najmanjeg pozitivnog rešenja jednačine [inline]\displaystyle\frac{2\sin x+1}{\sqrt{\cos x}}=0[/inline] jednak je:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{7\pi}{6}[/inline]; [inline]\text{B)}[/inline] [inline]\displaystyle\frac{11\pi}{6}[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle\frac{5\pi}{3}[/inline]; [inline]\text{D)}[/inline] [inline]\displaystyle\frac{4\pi}{3}[/inline]; [inline]\text{E)}[/inline] [inline]\pi[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]\displaystyle\frac{7\pi}{6}[/inline]; [inline]\text{B)}[/inline] [inline]\displaystyle\frac{11\pi}{6}[/inline]; [inline]\enclose{circle}{\text{C)}}[/inline] [inline]\displaystyle\frac{5\pi}{3}[/inline]; [inline]\text{D)}[/inline] [inline]\displaystyle\frac{4\pi}{3}[/inline]; [inline]\text{E)}[/inline] [inline]\pi[/inline]; [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK
12.Link zadatka U jednakokrakom trapezu [inline]ABCD[/inline] ugao između kraka [inline]AD[/inline] i dijagonale [inline]BD[/inline] jednak je [inline]90^\circ[/inline]. Ako su dužine osnovica trapeza jednake [inline]6\text{ cm}[/inline] i [inline]3\text{ cm}[/inline], onda je površina datog trapeza jednaka:
[inline]\text{A)}[/inline] [inline]12\text{ cm}^2[/inline]; [inline]\text{B)}[/inline] [inline]6\sqrt3\text{ cm}^2[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle\frac{15\sqrt2}{2}\text{ cm}^2[/inline]; [inline]\text{D)}[/inline] [inline]\displaystyle\frac{27\sqrt3}{4}\text{ cm}^2[/inline]; [inline]\text{E)}[/inline] [inline]9\sqrt2\text{ cm}^2[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]12\text{ cm}^2[/inline]; [inline]\text{B)}[/inline] [inline]6\sqrt3\text{ cm}^2[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle\frac{15\sqrt2}{2}\text{ cm}^2[/inline]; [inline]\enclose{circle}{\text{D)}}[/inline] [inline]\displaystyle\frac{27\sqrt3}{4}\text{ cm}^2[/inline]; [inline]\text{E)}[/inline] [inline]9\sqrt2\text{ cm}^2[/inline]; [inline]\text{N)}[/inline] Ne znam.
13.Link zadatka Dat je geometrijski niz [inline]a_1,a_2,a_3,\ldots[/inline] Ako je [inline]a_5-a_2=756[/inline] i [inline]a_2+a_3+a_4=252[/inline], onda je [inline]a_1+a_2[/inline] jednako:
[inline]\text{A)}[/inline] [inline]5[/inline]; [inline]\text{B)}[/inline] [inline]20[/inline]; [inline]\text{C)}[/inline] [inline]25[/inline]; [inline]\text{D)}[/inline] [inline]15[/inline]; [inline]\text{E)}[/inline] [inline]10[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]5[/inline]; [inline]\text{B)}[/inline] [inline]20[/inline]; [inline]\text{C)}[/inline] [inline]25[/inline]; [inline]\enclose{circle}{\text{D)}}[/inline] [inline]15[/inline]; [inline]\text{E)}[/inline] [inline]10[/inline]; [inline]\text{N)}[/inline] Ne znam.
14.Link zadatka Proizvod svih realnih rešenja jednačine [inline]x^{\log_2x}=16[/inline] jednak je:
[inline]\text{A)}[/inline] [inline]1[/inline]; [inline]\text{B)}[/inline] [inline]\displaystyle\frac{1}{2}[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle\frac{1}{4}[/inline]; [inline]\text{D)}[/inline] [inline]2[/inline]; [inline]\text{E)}[/inline] [inline]4[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\enclose{circle}{\text{A)}}[/inline] [inline]1[/inline]; [inline]\text{B)}[/inline] [inline]\displaystyle\frac{1}{2}[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle\frac{1}{4}[/inline]; [inline]\text{D)}[/inline] [inline]2[/inline]; [inline]\text{E)}[/inline] [inline]4[/inline]; [inline]\text{N)}[/inline] Ne znam.
15.Link zadatka Skup svih rešenja nejednačine [inline]\sqrt{3x^2+11x-4}<x+1[/inline] je:
[inline]\text{A)}[/inline] [inline]\displaystyle\left[\frac{1}{3},\frac{2}{5}\right)[/inline]; [inline]\text{B)}[/inline] [inline]\displaystyle\left[\frac{2}{5},\frac{1}{2}\right)[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle\left[\frac{1}{6},\frac{1}{2}\right)[/inline]; [inline]\text{D)}[/inline] [inline]\displaystyle\left[\frac{1}{3},\frac{3}{5}\right)[/inline]; [inline]\text{E)}[/inline] [inline]\displaystyle\left[\frac{1}{3},\frac{1}{2}\right)[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]\displaystyle\left[\frac{1}{3},\frac{2}{5}\right)[/inline]; [inline]\text{B)}[/inline] [inline]\displaystyle\left[\frac{2}{5},\frac{1}{2}\right)[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle\left[\frac{1}{6},\frac{1}{2}\right)[/inline]; [inline]\text{D)}[/inline] [inline]\displaystyle\left[\frac{1}{3},\frac{3}{5}\right)[/inline]; [inline]\enclose{circle}{\text{E)}}[/inline] [inline]\displaystyle\left[\frac{1}{3},\frac{1}{2}\right)[/inline]; [inline]\text{N)}[/inline] Ne znam.
16.Link zadatka Vrednost izraza [inline]\sin6^\circ-\sin42^\circ-\sin66^\circ+\sin78^\circ[/inline] jednaka je:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{\sqrt2}{2}[/inline]; [inline]\text{B)}[/inline] [inline]\displaystyle-\frac{\sqrt2}{2}[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle\frac{1}{2}[/inline]; [inline]\text{D)}[/inline] [inline]0[/inline]; [inline]\text{E)}[/inline] [inline]\displaystyle-\frac{1}{2}[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]\displaystyle\frac{\sqrt2}{2}[/inline]; [inline]\text{B)}[/inline] [inline]\displaystyle-\frac{\sqrt2}{2}[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle\frac{1}{2}[/inline]; [inline]\text{D)}[/inline] [inline]0[/inline]; [inline]\enclose{circle}{\text{E)}}[/inline] [inline]\displaystyle-\frac{1}{2}[/inline]; [inline]\text{N)}[/inline] Ne znam.
17.Link zadatka Broj svih vrednosti prirodnog broja [inline]n[/inline] za koje razvoj [inline]\left(\sqrt x+\sqrt[3]x\right)^n[/inline] sadrži član oblika [inline]m\cdot x^7[/inline], [inline]m\in\mathbb{Z}[/inline], jednak je:
[inline]\text{A)}[/inline] [inline]6[/inline]; [inline]\text{B)}[/inline] [inline]4[/inline]; [inline]\text{C)}[/inline] [inline]8[/inline]; [inline]\text{D)}[/inline] [inline]7[/inline]; [inline]\text{E)}[/inline] [inline]10[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]6[/inline]; [inline]\text{B)}[/inline] [inline]4[/inline]; [inline]\enclose{circle}{\text{C)}}[/inline] [inline]8[/inline]; [inline]\text{D)}[/inline] [inline]7[/inline]; [inline]\text{E)}[/inline] [inline]10[/inline]; [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK
18.Link zadatka Površina osnove prave trostrane prizme je [inline]4\text{ cm}^2[/inline], a površine bočnih strana su [inline]9\text{ cm}^2[/inline], [inline]10\text{ cm}^2[/inline] i [inline]17\text{ cm}^2[/inline]. Zapremina date prizme jednaka je:
[inline]\text{A)}[/inline] [inline]8\text{ cm}^3[/inline]; [inline]\text{B)}[/inline] [inline]20\text{ cm}^3[/inline]; [inline]\text{C)}[/inline] [inline]24\text{ cm}^3[/inline]; [inline]\text{D)}[/inline] [inline]12\text{ cm}^3[/inline]; [inline]\text{E)}[/inline] [inline]16\text{ cm}^3[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]8\text{ cm}^3[/inline]; [inline]\text{B)}[/inline] [inline]20\text{ cm}^3[/inline]; [inline]\text{C)}[/inline] [inline]24\text{ cm}^3[/inline]; [inline]\enclose{circle}{\text{D)}}[/inline] [inline]12\text{ cm}^3[/inline]; [inline]\text{E)}[/inline] [inline]16\text{ cm}^3[/inline]; [inline]\text{N)}[/inline] Ne znam.
19.Link zadatka Maksimalna zapremina prave pravilne četvorostrane piramide površine [inline]P[/inline] iznosi:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{P\sqrt P}{12\sqrt3}[/inline]; [inline]\text{B)}[/inline] [inline]\displaystyle\frac{P\sqrt P}{12\sqrt2}[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle\frac{P\sqrt P}{16}[/inline]; [inline]\text{D)}[/inline] [inline]\displaystyle\frac{P\sqrt P}{18}[/inline]; [inline]\text{E)}[/inline] [inline]\displaystyle\frac{P\sqrt P}{12}[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]\displaystyle\frac{P\sqrt P}{12\sqrt3}[/inline]; [inline]\enclose{circle}{\text{B)}}[/inline] [inline]\displaystyle\frac{P\sqrt P}{12\sqrt2}[/inline]; [inline]\text{C)}[/inline] [inline]\displaystyle\frac{P\sqrt P}{16}[/inline]; [inline]\text{D)}[/inline] [inline]\displaystyle\frac{P\sqrt P}{18}[/inline]; [inline]\text{E)}[/inline] [inline]\displaystyle\frac{P\sqrt P}{12}[/inline]; [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK
20.Link zadatka Broj svih permutacija slova reči MOSKVA kod kojih se između dva samoglasnika nalazi bar jedan suglasnik jednak je:
[inline]\text{A)}[/inline] [inline]450[/inline]; [inline]\text{B)}[/inline] [inline]480[/inline]; [inline]\text{C)}[/inline] [inline]520[/inline]; [inline]\text{D)}[/inline] [inline]560[/inline]; [inline]\text{E)}[/inline] [inline]600[/inline]; [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]450[/inline]; [inline]\enclose{circle}{\text{B)}}[/inline] [inline]480[/inline]; [inline]\text{C)}[/inline] [inline]520[/inline]; [inline]\text{D)}[/inline] [inline]560[/inline]; [inline]\text{E)}[/inline] [inline]600[/inline]; [inline]\text{N)}[/inline] Ne znam.
Obrađeno u temi: LINK
Izvor: LINK
Napomena: Ukoliko vam treba pomoć oko rešavanja nekog od zadataka koji dosad nije obrađivan ni na jednoj temi, slobodno zatražite pomoć na forumu „Matemanija“, naravno uz poštovanje forumskih pravila.