ETF MATF FON GRF TMF FORUM

Prijemni ispit na Fakultetu organizacionih nauka u Beogradu

26. jun 2018.


Test ima [inline]20[/inline] zadataka na [inline]2[/inline] stranice. Svi zadaci se vrednuju sa po [inline]5[/inline] poena. Ukoliko ne želite da se opredelite za jedan od prvih pet ponuđenih odgovora možete da označite „N“, što se vrednuje sa [inline]0[/inline] poena. Za pogrešan odgovor se oduzima [inline]0,5[/inline] poena. Ako se, za konkretan zadatak, označi više od jednog ili ne označi ni jedan odgovor, kao i ako se na bilo koji način nepravilno označi odgovor, oduzima se [inline]1[/inline] poen.

1.Link zadatka Izraz [inline]\displaystyle\frac{2a+\left(a^2-1\right)^\frac{1}{2}}{\left((a-1)^\frac{1}{2}+(a+1)^\frac{1}{2}\right)\cdot\left((a-1)^\frac{3}{2}-(a+1)^\frac{3}{2}\right)}[/inline], gde je [inline]a[/inline] realan broj i [inline]a\ge1[/inline], identički je jednak izrazu:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{1}{2a}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{2a}{2a-\left(a^2-1\right)^\frac{1}{2}}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{2a}{a+\left(a^2-1\right)^\frac{1}{2}}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle-\frac{1}{2}[/inline];      [inline]\text{E)}[/inline] [inline]2[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]\displaystyle\frac{1}{2a}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{2a}{2a-\left(a^2-1\right)^\frac{1}{2}}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{2a}{a+\left(a^2-1\right)^\frac{1}{2}}[/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline]\displaystyle-\frac{1}{2}[/inline];      [inline]\text{E)}[/inline] [inline]2[/inline];              [inline]\text{N)}[/inline] Ne znam.

2.Link zadatka U [inline]K[/inline] litara rastvora vode i soli ima [inline]80\%[/inline] soli. Ako se dodavanjem [inline]10[/inline] litara vode u taj rastvor dobije rastvor u kome ima [inline]60\%[/inline] soli, onda [inline]K[/inline] iznosi:
[inline]\text{A)}[/inline] [inline]30[/inline];      [inline]\text{B)}[/inline] [inline]35[/inline];      [inline]\text{C)}[/inline] [inline]20[/inline];      [inline]\text{D)}[/inline] [inline]12[/inline];      [inline]\text{E)}[/inline] [inline]45[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\enclose{circle}{\text{A)}}[/inline] [inline]30[/inline];      [inline]\text{B)}[/inline] [inline]35[/inline];      [inline]\text{C)}[/inline] [inline]20[/inline];      [inline]\text{D)}[/inline] [inline]12[/inline];      [inline]\text{E)}[/inline] [inline]45[/inline];              [inline]\text{N)}[/inline] Ne znam.

Obrađeno u temi: LINK

3.Link zadatka Vrednost izraza [inline]\displaystyle\frac{\sqrt[3]{12+4\sqrt5}\cdot\sqrt[3]{12-4\sqrt5}}{\sqrt[6]{4-2\sqrt3}\cdot\sqrt[3]{4\left(1+\sqrt3\right)}}[/inline] je:
[inline]\text{A)}[/inline] [inline]-1[/inline];      [inline]\text{B)}[/inline] [inline]1[/inline];      [inline]\text{C)}[/inline] [inline]4[/inline];      [inline]\text{D)}[/inline] [inline]2[/inline];      [inline]\text{E)}[/inline] [inline]-2[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]-1[/inline];      [inline]\text{B)}[/inline] [inline]1[/inline];      [inline]\text{C)}[/inline] [inline]4[/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline]2[/inline];      [inline]\text{E)}[/inline] [inline]-2[/inline];              [inline]\text{N)}[/inline] Ne znam.

Obrađeno u temi: LINK

4.Link zadatka Ako kompleksan broj [inline]z[/inline] zadovoljava jednačinu [inline]\overline z(4-2i)+3\sqrt3+3i\left(1+2\sqrt3+2i\right)=0[/inline], gde je [inline]i[/inline] imaginarna jedinica ([inline]i^2=-1[/inline]), onda [inline]\text{Re}(z)\cdot\text{Im}(z)[/inline] iznosi:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{9\sqrt3}{4}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{25\sqrt3}{4}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle-\frac{9\sqrt3}{4}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle-\frac{25\sqrt3}{4}[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{81\sqrt3}{4}[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\enclose{circle}{\text{A)}}[/inline] [inline]\displaystyle\frac{9\sqrt3}{4}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{25\sqrt3}{4}[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle-\frac{9\sqrt3}{4}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle-\frac{25\sqrt3}{4}[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{81\sqrt3}{4}[/inline];              [inline]\text{N)}[/inline] Ne znam.

5.Link zadatka Ako je ostatak pri deljenju polinoma [inline]x^{2018}-ax^{2017}+bx^{2015}+c[/inline] polinomom [inline]x^3-x^2+x-1[/inline] jednak [inline]ax+b[/inline], gde su [inline]a[/inline], [inline]b[/inline] i [inline]c[/inline] realni brojevi, onda je vrednost izraza [inline]a-b+c[/inline] jednaka:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{5}{2}[/inline];      [inline]\text{B)}[/inline] [inline]0[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{3}{2}[/inline];      [inline]\text{D)}[/inline] [inline]1[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle-\frac{3}{2}[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]\displaystyle\frac{5}{2}[/inline];      [inline]\text{B)}[/inline] [inline]0[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]\displaystyle\frac{3}{2}[/inline];      [inline]\text{D)}[/inline] [inline]1[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle-\frac{3}{2}[/inline];              [inline]\text{N)}[/inline] Ne znam.

Obrađeno u temi: LINK

6.Link zadatka Presek oblasti definisanosti realnih funkcija [inline]\displaystyle f_1(x)=\sqrt{\frac{\log_2(x+1)}{x-1}}[/inline], [inline]\displaystyle f_2(x)=\sqrt{\frac{x^2+3x+4}{x-3}}[/inline] i [inline]f_3(x)=\log_7(4+5x)+\sqrt{7^{2x}-2401}[/inline] je:
[inline]\text{A)}[/inline] [inline](-1,0]\cup(1,3)\cup(3,4)[/inline];      [inline]\text{B)}[/inline] [inline][2,3)\cup(3,+\infty)[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\left(-\frac{4}{5},1\right)\cup(1,3)\cup(3,7)[/inline];      [inline]\text{D)}[/inline] [inline](1,3)\cup(3,+\infty)[/inline];      [inline]\text{E)}[/inline] [inline](3,+\infty)[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline](-1,0]\cup(1,3)\cup(3,4)[/inline];      [inline]\text{B)}[/inline] [inline][2,3)\cup(3,+\infty)[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\left(-\frac{4}{5},1\right)\cup(1,3)\cup(3,7)[/inline];      [inline]\text{D)}[/inline] [inline](1,3)\cup(3,+\infty)[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline](3,+\infty)[/inline];              [inline]\text{N)}[/inline] Ne znam.

7.Link zadatka Broj svih realnih rešenja jednačine [inline]\log_2(\log_3x)+\log_2\left(\log_3x^2-3\right)=1[/inline] je:
[inline]\text{A)}[/inline] [inline]2[/inline];      [inline]\text{B)}[/inline] [inline]3[/inline];      [inline]\text{C)}[/inline] [inline]1[/inline];      [inline]\text{D)}[/inline] [inline]4[/inline];      [inline]\text{E)}[/inline] [inline]0[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]2[/inline];      [inline]\text{B)}[/inline] [inline]3[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]1[/inline];      [inline]\text{D)}[/inline] [inline]4[/inline];      [inline]\text{E)}[/inline] [inline]0[/inline];              [inline]\text{N)}[/inline] Ne znam.

8.Link zadatka Vrednost izraza [inline]\log_4\log_3\log_28+\log_{\sqrt7+1}\left(8+2\sqrt7\right)\cdot\log_\sqrt[3]77\sqrt7[/inline] je:
[inline]\text{A)}[/inline] [inline]9[/inline];      [inline]\text{B)}[/inline] [inline]11[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{9}{2}[/inline];      [inline]\text{D)}[/inline] [inline]3[/inline];      [inline]\text{E)}[/inline] [inline]10[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\enclose{circle}{\text{A)}}[/inline] [inline]9[/inline];      [inline]\text{B)}[/inline] [inline]11[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{9}{2}[/inline];      [inline]\text{D)}[/inline] [inline]3[/inline];      [inline]\text{E)}[/inline] [inline]10[/inline];              [inline]\text{N)}[/inline] Ne znam.

9.Link zadatka Broj svih celobrojnih rešenja nejednačine [inline]5^{2-\left(\frac{1}{3}\right)^\frac{2}{x}}\lt0.2[/inline] je:
[inline]\text{A)}[/inline] [inline]2[/inline];      [inline]\text{B)}[/inline] [inline]3[/inline];      [inline]\text{C)}[/inline] [inline]0[/inline];      [inline]\text{D)}[/inline] [inline]1[/inline];      [inline]\text{E)}[/inline] [inline]4[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]2[/inline];      [inline]\text{B)}[/inline] [inline]3[/inline];      [inline]\text{C)}[/inline] [inline]0[/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline]1[/inline];      [inline]\text{E)}[/inline] [inline]4[/inline];              [inline]\text{N)}[/inline] Ne znam.

10.Link zadatka Rešenja jednačine [inline](m+1)x^2+mx-m+1=0[/inline], gde je [inline]m[/inline] realan broj i [inline]m\ne-1[/inline], su negativna i različita ako i samo ako [inline]m[/inline] pripada skupu:
[inline]\text{A)}[/inline] [inline]\displaystyle\left[-\frac{2}{\sqrt5},1\right)[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\left[\frac{2}{\sqrt5},1\right)[/inline];      [inline]\text{C)}[/inline] [inline](-1,1)[/inline];      [inline]\text{D)}[/inline] [inline](0,1)[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\left(\frac{2}{\sqrt5},1\right)[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]\displaystyle\left[-\frac{2}{\sqrt5},1\right)[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\left[\frac{2}{\sqrt5},1\right)[/inline];      [inline]\text{C)}[/inline] [inline](-1,1)[/inline];      [inline]\text{D)}[/inline] [inline](0,1)[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]\displaystyle\left(\frac{2}{\sqrt5},1\right)[/inline];              [inline]\text{N)}[/inline] Ne znam.

Obrađeno u temi: LINK

11.Link zadatka Broj svih negativnih celobrojnih rešenja nejednačine [inline](x+3)\sqrt{12-|x|}\ge0[/inline] je:
[inline]\text{A)}[/inline] [inline]3[/inline];      [inline]\text{B)}[/inline] [inline]4[/inline];      [inline]\text{C)}[/inline] [inline]12[/inline];      [inline]\text{D)}[/inline] [inline]5[/inline];      [inline]\text{E)}[/inline] [inline]6[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]3[/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]4[/inline];      [inline]\text{C)}[/inline] [inline]12[/inline];      [inline]\text{D)}[/inline] [inline]5[/inline];      [inline]\text{E)}[/inline] [inline]6[/inline];              [inline]\text{N)}[/inline] Ne znam.

12.Link zadatka U trapezu površine [inline]\displaystyle\frac{3}{2}\left(11-\sqrt3\right)\text{ cm}^2[/inline] duža osnovica je dužine [inline]7\text{ cm}[/inline], a visina dužine [inline]3\text{ cm}[/inline]. Ako je jedan ugao na osnovici trapeza [inline]45^\circ[/inline], onda je obim tog trapeza u centimetrima jednak:
[inline]\text{A)}[/inline] [inline]18[/inline];      [inline]\text{B)}[/inline] [inline]11+\sqrt3+3\sqrt2[/inline];      [inline]\text{C)}[/inline] [inline]11+3\sqrt2[/inline];      [inline]\text{D)}[/inline] [inline]20[/inline];      [inline]\text{E)}[/inline] [inline]11+3\sqrt3[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]18[/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]11+\sqrt3+3\sqrt2[/inline];      [inline]\text{C)}[/inline] [inline]11+3\sqrt2[/inline];      [inline]\text{D)}[/inline] [inline]20[/inline];      [inline]\text{E)}[/inline] [inline]11+3\sqrt3[/inline];              [inline]\text{N)}[/inline] Ne znam.

Obrađeno u temi: LINK

13.Link zadatka Realni brojevi [inline]a[/inline], [inline]b[/inline] i [inline]c[/inline], čiji je zbir jednak [inline]19[/inline], čine rastući geometrijski niz. Ako brojevi [inline]a[/inline], [inline]b[/inline] i [inline]c-1[/inline] čine aritmetički niz, onda je [inline]c\cdot(a+b)^{-1}[/inline] jednako:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{4}{15}[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{9}{10}[/inline];      [inline]\text{C)}[/inline] [inline]90[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{15}{4}[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{10}{9}[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]\displaystyle\frac{4}{15}[/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]\displaystyle\frac{9}{10}[/inline];      [inline]\text{C)}[/inline] [inline]90[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{15}{4}[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{10}{9}[/inline];              [inline]\text{N)}[/inline] Ne znam.

Obrađeno u temi: LINK

14.Link zadatka Vrednost izraza [inline]\log_2\cos20^\circ+\log_2\cos40^\circ+\log_2\cos80^\circ[/inline] jednaka je:
[inline]\text{A)}[/inline] [inline]-3[/inline];      [inline]\text{B)}[/inline] [inline]-\sqrt2[/inline];      [inline]\text{C)}[/inline] [inline]2[/inline];      [inline]\text{D)}[/inline] [inline]3[/inline];      [inline]\text{E)}[/inline] [inline]-2[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\enclose{circle}{\text{A)}}[/inline] [inline]-3[/inline];      [inline]\text{B)}[/inline] [inline]-\sqrt2[/inline];      [inline]\text{C)}[/inline] [inline]2[/inline];      [inline]\text{D)}[/inline] [inline]3[/inline];      [inline]\text{E)}[/inline] [inline]-2[/inline];              [inline]\text{N)}[/inline] Ne znam.

15.Link zadatka Centar [inline]C(p,q)[/inline] kružnice poluprečnika [inline]r[/inline] pripada pravoj [inline]5x-3y+12=0[/inline]. Ako ta kružnica sadrži tačke [inline]A(1,-3)[/inline] i [inline]B(1,1)[/inline], onda izraz [inline]p+q+r^2[/inline] iznosi:
[inline]\text{A)}[/inline] [inline]20[/inline];      [inline]\text{B)}[/inline] [inline]16[/inline];      [inline]\text{C)}[/inline] [inline]18[/inline];      [inline]\text{D)}[/inline] [inline]24[/inline];      [inline]\text{E)}[/inline] [inline]17[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]20[/inline];      [inline]\enclose{circle}{\text{B)}}[/inline] [inline]16[/inline];      [inline]\text{C)}[/inline] [inline]18[/inline];      [inline]\text{D)}[/inline] [inline]24[/inline];      [inline]\text{E)}[/inline] [inline]17[/inline];              [inline]\text{N)}[/inline] Ne znam.

16.Link zadatka U pravu kupu zapremine [inline]12\pi\text{ cm}^3[/inline] upisana je polulopta tako da polulopta dodiruje omotač kupe po nekoj kružnici i osnova polulopte pripada osnovi kupe. Ako je visina kupe dužine [inline]4\text{ cm}[/inline], onda je zapremina polulopte jednaka:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{384\pi}{125}\text{ cm}^3[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{2304\pi}{125}\text{ cm}^3[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{576\pi}{125}\text{ cm}^3[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{1152\pi}{125}\text{ cm}^3[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{128\pi}{125}\text{ cm}^3[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]\displaystyle\frac{384\pi}{125}\text{ cm}^3[/inline];      [inline]\text{B)}[/inline] [inline]\displaystyle\frac{2304\pi}{125}\text{ cm}^3[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{576\pi}{125}\text{ cm}^3[/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline]\displaystyle\frac{1152\pi}{125}\text{ cm}^3[/inline];      [inline]\text{E)}[/inline] [inline]\displaystyle\frac{128\pi}{125}\text{ cm}^3[/inline];              [inline]\text{N)}[/inline] Ne znam.

Obrađeno u temi: LINK

17.Link zadatka Zbir svih rešenja jednačine [inline]3(1-\sin x)+\sin^4x=1+\cos^4x[/inline] koja pripadaju intervalu [inline](-\pi,\pi)[/inline] jednak je:
[inline]\text{A)}[/inline] [inline]\displaystyle\frac{2\pi}{3}[/inline];      [inline]\text{B)}[/inline] [inline]2\pi[/inline];      [inline]\text{C)}[/inline] [inline]\displaystyle\frac{3\pi}{2}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{4\pi}{3}[/inline];      [inline]\text{E)}[/inline] [inline]\pi[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]\displaystyle\frac{2\pi}{3}[/inline];      [inline]\text{B)}[/inline] [inline]2\pi[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]\displaystyle\frac{3\pi}{2}[/inline];      [inline]\text{D)}[/inline] [inline]\displaystyle\frac{4\pi}{3}[/inline];      [inline]\text{E)}[/inline] [inline]\pi[/inline];              [inline]\text{N)}[/inline] Ne znam.

18.Link zadatka Oko prave pravilne trostrane prizme zapremine [inline]4\text{ cm}^3[/inline] opisan je valjak tako da su im osnove u istoj ravni. Najmanja površina tako opisanog valjka iznosi:
[inline]\text{A)}[/inline] [inline]2\sqrt[3]4\pi\text{ cm}^2[/inline];      [inline]\text{B)}[/inline] [inline]4\pi\text{ cm}^2[/inline];      [inline]\text{C)}[/inline] [inline]16\pi\text{ cm}^2[/inline];      [inline]\text{D)}[/inline] [inline]8\pi\text{ cm}^2[/inline];      [inline]\text{E)}[/inline] [inline]4\sqrt[3]4\pi\text{ cm}^2[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]2\sqrt[3]4\pi\text{ cm}^2[/inline];      [inline]\text{B)}[/inline] [inline]4\pi\text{ cm}^2[/inline];      [inline]\text{C)}[/inline] [inline]16\pi\text{ cm}^2[/inline];      [inline]\enclose{circle}{\text{D)}}[/inline] [inline]8\pi\text{ cm}^2[/inline];      [inline]\text{E)}[/inline] [inline]4\sqrt[3]4\pi\text{ cm}^2[/inline];              [inline]\text{N)}[/inline] Ne znam.

Obrađeno u temi: LINK

19.Link zadatka Broj načina da se izaberu tri prirodna broja manja od [inline]31[/inline] tako da nemaju sva tri isti ostatak pri deljenju sa tri, jednak je:
[inline]\text{A)}[/inline] [inline]3940[/inline];      [inline]\text{B)}[/inline] [inline]3820[/inline];      [inline]\text{C)}[/inline] [inline]3700[/inline];      [inline]\text{D)}[/inline] [inline]5700[/inline];      [inline]\text{E)}[/inline] [inline]1000[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]3940[/inline];      [inline]\text{B)}[/inline] [inline]3820[/inline];      [inline]\enclose{circle}{\text{C)}}[/inline] [inline]3700[/inline];      [inline]\text{D)}[/inline] [inline]5700[/inline];      [inline]\text{E)}[/inline] [inline]1000[/inline];              [inline]\text{N)}[/inline] Ne znam.

Obrađeno u temi: LINK

20.Link zadatka U razvoju [inline]\left(3-\sqrt[3]5\right)^n[/inline] zbir svih binomnih koeficijenata jednak je [inline]4^{1009}[/inline]. Broj svih članova ovog razvoja koji su negativni celi brojevi jednak je:
[inline]\text{A)}[/inline] [inline]673[/inline];      [inline]\text{B)}[/inline] [inline]0[/inline];      [inline]\text{C)}[/inline] [inline]672[/inline];      [inline]\text{D)}[/inline] [inline]337[/inline];      [inline]\text{E)}[/inline] [inline]336[/inline];              [inline]\text{N)}[/inline] Ne znam.[inline]\text{A)}[/inline] [inline]673[/inline];      [inline]\text{B)}[/inline] [inline]0[/inline];      [inline]\text{C)}[/inline] [inline]672[/inline];      [inline]\text{D)}[/inline] [inline]337[/inline];      [inline]\enclose{circle}{\text{E)}}[/inline] [inline]336[/inline];              [inline]\text{N)}[/inline] Ne znam.


Izvor: LINK


Napomena: Ukoliko vam treba pomoć oko rešavanja nekog od zadataka koji dosad nije obrađivan ni na jednoj temi, slobodno zatražite pomoć na forumu „Matemanija“, naravno uz poštovanje forumskih pravila.