1.Link zadatka Broj [inline]\displaystyle\frac{\sqrt6}{\sqrt3-\sqrt6-\sqrt{24}-\sqrt{48}+\sqrt{108}}[/inline] jednak je:
[inline]\text{(A)}[/inline] [inline]\displaystyle-\frac{2-\sqrt2}{3}[/inline]; [inline]\text{(B)}[/inline] [inline]\displaystyle-\frac{2+\sqrt2}{3}[/inline]; [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{2-\sqrt2}{3}[/inline]; [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{2+\sqrt2}{3}[/inline]; [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{2}{3}[/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline]\displaystyle-\frac{2-\sqrt2}{3}[/inline]; [inline]\enclose{circle}{\text{(B)}}[/inline] [inline]\displaystyle-\frac{2+\sqrt2}{3}[/inline]; [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{2-\sqrt2}{3}[/inline]; [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{2+\sqrt2}{3}[/inline]; [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{2}{3}[/inline]; [inline]\text{N)}[/inline] ne znam.
2.Link zadatka Skup vrednosti realnog parametra [inline]a[/inline], tako da jednačina [inline]|x|-|x-1|+|x-2|=a[/inline] ima tačno dva realna rešenja je:
[inline]\text{(A)}[/inline] [inline](2,\infty)[/inline]; [inline]\text{(B)}[/inline] [inline][2,\infty)[/inline]; [inline]\text{(C)}[/inline] [inline](0,1)\cup\{2\}[/inline]; [inline]\text{(D)}[/inline] [inline]\{1\}\cup(2,\infty)[/inline]; [inline]\text{(E)}[/inline] [inline]\{1\}\cup[2,\infty)[/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline](2,\infty)[/inline]; [inline]\text{(B)}[/inline] [inline][2,\infty)[/inline]; [inline]\text{(C)}[/inline] [inline](0,1)\cup\{2\}[/inline]; [inline]\enclose{circle}{\text{(D)}}[/inline] [inline]\{1\}\cup(2,\infty)[/inline]; [inline]\text{(E)}[/inline] [inline]\{1\}\cup[2,\infty)[/inline]; [inline]\text{N)}[/inline] ne znam.
3.Link zadatka Aca, Bane i Vlada su podelili čokoladu u odnosu [inline]11:8:6[/inline]. Koliki je procenat čokolade dobio Aca?
[inline]\text{(A)}[/inline] [inline]11\%[/inline]; [inline]\text{(B)}[/inline] [inline]24\%[/inline]; [inline]\text{(C)}[/inline] [inline]32\%[/inline]; [inline]\text{(D)}[/inline] [inline]44\%[/inline]; [inline]\text{(E)}[/inline] [inline]55\%[/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline]11\%[/inline]; [inline]\text{(B)}[/inline] [inline]24\%[/inline]; [inline]\text{(C)}[/inline] [inline]32\%[/inline]; [inline]\enclose{circle}{\text{(D)}}[/inline] [inline]44\%[/inline]; [inline]\text{(E)}[/inline] [inline]55\%[/inline]; [inline]\text{N)}[/inline] ne znam.
4.Link zadatka Skup rešenja nejednačine [inline]\displaystyle\frac{|2x-1|+x+1}{x^2-x}\le1[/inline] je:
[inline]\text{(A)}[/inline] [inline]\displaystyle\left(-\infty,-\sqrt2\right]\cup\left(0,\frac{1}{2}\right]\cup[4,\infty)[/inline]; [inline]\text{(B)}[/inline] [inline](-\infty,0)\cup(0,1)\cup[4,\infty)[/inline]; [inline]\text{(C)}[/inline] [inline]\displaystyle\left[\frac{1}{2},1\right)\cup[4,\infty)[/inline]; [inline]\text{(D)}[/inline] [inline]\left(-\infty,-\sqrt2\right]\cup(0,1)\cup[4,\infty)[/inline]; [inline]\text{(E)}[/inline] nijedan od ponuđenih odgovora; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline]\displaystyle\left(-\infty,-\sqrt2\right]\cup\left(0,\frac{1}{2}\right]\cup[4,\infty)[/inline]; [inline]\text{(B)}[/inline] [inline](-\infty,0)\cup(0,1)\cup[4,\infty)[/inline]; [inline]\text{(C)}[/inline] [inline]\displaystyle\left[\frac{1}{2},1\right)\cup[4,\infty)[/inline]; [inline]\enclose{circle}{\text{(D)}}[/inline] [inline]\left(-\infty,-\sqrt2\right]\cup(0,1)\cup[4,\infty)[/inline]; [inline]\text{(E)}[/inline] nijedan od ponuđenih odgovora; [inline]\text{N)}[/inline] ne znam.
5.Link zadatka Ako su [inline]a,b\in\mathbb{R}[/inline] i ako za rešenja [inline]x_1[/inline] i [inline]x_2[/inline] kvadratne jednačine [inline]x^2+ax+b=0[/inline] važi [inline]x_1\lt0[/inline], [inline]x_2>0[/inline] i [inline]\displaystyle\frac{1}{x_1}+\frac{1}{x_1x_2}+\frac{1}{x_2}=-1[/inline], onda [inline]x_1[/inline] pripada intervalu:
[inline]\text{(A)}[/inline] [inline](-\infty,-5)[/inline]; [inline]\text{(B)}[/inline] [inline][-5,-4][/inline]; [inline]\text{(C)}[/inline] [inline](-4,-2)[/inline]; [inline]\text{(D)}[/inline] [inline][-2,-1][/inline]; [inline]\text{(E)}[/inline] [inline](-1,0)[/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline](-\infty,-5)[/inline]; [inline]\text{(B)}[/inline] [inline][-5,-4][/inline]; [inline]\text{(C)}[/inline] [inline](-4,-2)[/inline]; [inline]\enclose{circle}{\text{(D)}}[/inline] [inline][-2,-1][/inline]; [inline]\text{(E)}[/inline] [inline](-1,0)[/inline]; [inline]\text{N)}[/inline] ne znam.
6.Link zadatka Skup rešenja nejednačine [inline]\sqrt[3]{x^2-1}\ge x-1[/inline] je:
[inline]\text{(A)}[/inline] [inline][0,3][/inline]; [inline]\text{(B)}[/inline] [inline][1,3][/inline]; [inline]\text{(C)}[/inline] [inline](-\infty,-1][/inline]; [inline]\text{(D)}[/inline] [inline](-\infty,-1]\cup[1,3][/inline]; [inline]\text{(E)}[/inline] [inline](-\infty,0]\cup[1,3][/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline][0,3][/inline]; [inline]\text{(B)}[/inline] [inline][1,3][/inline]; [inline]\text{(C)}[/inline] [inline](-\infty,-1][/inline]; [inline]\text{(D)}[/inline] [inline](-\infty,-1]\cup[1,3][/inline]; [inline]\enclose{circle}{\text{(E)}}[/inline] [inline](-\infty,0]\cup[1,3][/inline]; [inline]\text{N)}[/inline] ne znam.
7.Link zadatka Skup rešenja nejednačine [inline]\displaystyle\frac{5\cdot3^x}{3^x-2^x}\ge9+\frac{2^x}{3^{x-2}}[/inline] je:
[inline]\text{(A)}[/inline] [inline](-\infty,0)\cup[1,\infty)[/inline]; [inline]\text{(B)}[/inline] [inline](0,1][/inline]; [inline]\text{(C)}[/inline] [inline](0,1)[/inline]; [inline]\text{(D)}[/inline] [inline][-1,0)\cup(0,1][/inline]; [inline]\text{(E)}[/inline] [inline][0,1][/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline](-\infty,0)\cup[1,\infty)[/inline]; [inline]\enclose{circle}{\text{(B)}}[/inline] [inline](0,1][/inline]; [inline]\text{(C)}[/inline] [inline](0,1)[/inline]; [inline]\text{(D)}[/inline] [inline][-1,0)\cup(0,1][/inline]; [inline]\text{(E)}[/inline] [inline][0,1][/inline]; [inline]\text{N)}[/inline] ne znam.
8.Link zadatka Broj rešenja nejednačine [inline]\displaystyle\log_\frac{1}{2}\left(2^x-1\right)\cdot\log_\frac{1}{2}\left(2^{x-1}-\frac{1}{2}\right)\le2[/inline] u skupu prirodnih brojeva je:
[inline]\text{(A)}[/inline] [inline]0[/inline]; [inline]\text{(B)}[/inline] [inline]1[/inline]; [inline]\text{(C)}[/inline] [inline]2[/inline]; [inline]\text{(D)}[/inline] [inline]3[/inline]; [inline]\text{(E)}[/inline] veći od [inline]3[/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline]0[/inline]; [inline]\text{(B)}[/inline] [inline]1[/inline]; [inline]\enclose{circle}{\text{(C)}}[/inline] [inline]2[/inline]; [inline]\text{(D)}[/inline] [inline]3[/inline]; [inline]\text{(E)}[/inline] veći od [inline]3[/inline]; [inline]\text{N)}[/inline] ne znam.
9.Link zadatka Dužina poluprečnika opisanog kruga jednakokrakog trougla, dužine osnovice [inline]6[/inline], a kraka [inline]5[/inline], pripada intervalu:
[inline]\text{(A)}[/inline] [inline](0,1)[/inline]; [inline]\text{(B)}[/inline] [inline][1,2][/inline]; [inline]\text{(C)}[/inline] [inline](2,3)[/inline]; [inline]\text{(D)}[/inline] [inline][3,4][/inline]; [inline]\text{(E)}[/inline] [inline](4,\infty)[/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline](0,1)[/inline]; [inline]\text{(B)}[/inline] [inline][1,2][/inline]; [inline]\text{(C)}[/inline] [inline](2,3)[/inline]; [inline]\enclose{circle}{\text{(D)}}[/inline] [inline][3,4][/inline]; [inline]\text{(E)}[/inline] [inline](4,\infty)[/inline]; [inline]\text{N)}[/inline] ne znam.
10.Link zadatka U pravu zarubljenu kružnu kupu upisana je lopta površine [inline]P[/inline], a ugao koji izvodnica te zarubljene kupe obrazuje sa ravni kojoj pripada veća osnova je [inline]60^\circ[/inline]. Onda je površina omotača te zarubljene kupe jednaka:
[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{4\sqrt3P}{3}[/inline]; [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{3\sqrt3P}{2}[/inline]; [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{3P}{2}[/inline]; [inline]\text{(D)}[/inline] [inline]\displaystyle\frac{4P}{3}[/inline]; [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{4\sqrt3P}{2}[/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{4\sqrt3P}{3}[/inline]; [inline]\text{(B)}[/inline] [inline]\displaystyle\frac{3\sqrt3P}{2}[/inline]; [inline]\text{(C)}[/inline] [inline]\displaystyle\frac{3P}{2}[/inline]; [inline]\enclose{circle}{\text{(D)}}[/inline] [inline]\displaystyle\frac{4P}{3}[/inline]; [inline]\text{(E)}[/inline] [inline]\displaystyle\frac{4\sqrt3P}{2}[/inline]; [inline]\text{N)}[/inline] ne znam.
11.Link zadatka Zbir svih rešenja jednačine [inline]4\cos x\cos2x=\cos3x[/inline] koja pripadaju intervalu [inline][0,2\pi][/inline] je:
[inline]\text{(A)}[/inline] [inline]2\pi[/inline]; [inline]\text{(B)}[/inline] [inline]3\pi[/inline]; [inline]\text{(C)}[/inline] [inline]4\pi[/inline]; [inline]\text{(D)}[/inline] [inline]5\pi[/inline]; [inline]\text{(E)}[/inline] [inline]6\pi[/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline]2\pi[/inline]; [inline]\text{(B)}[/inline] [inline]3\pi[/inline]; [inline]\text{(C)}[/inline] [inline]4\pi[/inline]; [inline]\text{(D)}[/inline] [inline]5\pi[/inline]; [inline]\enclose{circle}{\text{(E)}}[/inline] [inline]6\pi[/inline]; [inline]\text{N)}[/inline] ne znam.
12.Link zadatka Neka je [inline]AB[/inline] duža osnovica jednakokrakog trapeza [inline]ABCD[/inline]. Ako dijagonala deli trapez na dva jednakokraka trougla, onda vrednost [inline]\displaystyle\frac{AB}{CD}[/inline] pripada intervalu:
[inline]\text{(A)}[/inline] [inline]\left(1,\sqrt2\right)[/inline]; [inline]\text{(B)}[/inline] [inline]\left[\sqrt2,\sqrt3\right)[/inline]; [inline]\text{(C)}[/inline] [inline]\left[\sqrt3,2\right)[/inline]; [inline]\text{(D)}[/inline] [inline]\left[2,\sqrt5\right)[/inline]; [inline]\text{(E)}[/inline] [inline]\left[\sqrt5,\infty\right)[/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline]\left(1,\sqrt2\right)[/inline]; [inline]\enclose{circle}{\text{(B)}}[/inline] [inline]\left[\sqrt2,\sqrt3\right)[/inline]; [inline]\text{(C)}[/inline] [inline]\left[\sqrt3,2\right)[/inline]; [inline]\text{(D)}[/inline] [inline]\left[2,\sqrt5\right)[/inline]; [inline]\text{(E)}[/inline] [inline]\left[\sqrt5,\infty\right)[/inline]; [inline]\text{N)}[/inline] ne znam.
13.Link zadatka Tačka kružnice [inline](x-5)^2+(y-4)^2=4[/inline] koja je najbliža kružnici [inline](x-1)^2+(y-1)^2=1[/inline] ima [inline]x[/inline] koordinatu jednaku:
[inline]\text{(A)}[/inline] [inline]2,8[/inline]; [inline]\text{(B)}[/inline] [inline]3,4[/inline]; [inline]\text{(C)}[/inline] [inline]4[/inline]; [inline]\text{(D)}[/inline] [inline]3,8[/inline]; [inline]\text{(E)}[/inline] [inline]6,6[/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline]2,8[/inline]; [inline]\enclose{circle}{\text{(B)}}[/inline] [inline]3,4[/inline]; [inline]\text{(C)}[/inline] [inline]4[/inline]; [inline]\text{(D)}[/inline] [inline]3,8[/inline]; [inline]\text{(E)}[/inline] [inline]6,6[/inline]; [inline]\text{N)}[/inline] ne znam.
14.Link zadatka Stranice pravouglog trougla predstavljaju tri uzastopna člana aritmetičke progresije koraka [inline]d[/inline]. Površina tog trougla je:
[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{9d^2}{2}[/inline]; [inline]\text{(B)}[/inline] [inline]6d^2[/inline]; [inline]\text{(C)}[/inline] [inline]12d^2[/inline]; [inline]\text{(D)}[/inline] [inline]d^2[/inline]; [inline]\text{(E)}[/inline] [inline]15d^2[/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline]\displaystyle\frac{9d^2}{2}[/inline]; [inline]\enclose{circle}{\text{(B)}}[/inline] [inline]6d^2[/inline]; [inline]\text{(C)}[/inline] [inline]12d^2[/inline]; [inline]\text{(D)}[/inline] [inline]d^2[/inline]; [inline]\text{(E)}[/inline] [inline]15d^2[/inline]; [inline]\text{N)}[/inline] ne znam.
15.Link zadatka Neka je [inline]n[/inline] neparan prirodan broj koji je deljiv sa [inline]3[/inline]. Onda za broj [inline]n^2+3[/inline] važi:
[inline]\text{(A)}[/inline] deljiv je sa [inline]3[/inline] i [inline]4[/inline], a nije sa [inline]9[/inline]; [inline]\text{(B)}[/inline] deljiv je sa [inline]2[/inline] i [inline]9[/inline], a nije sa [inline]4[/inline]; [inline]\text{(C)}[/inline] deljiv je sa [inline]2[/inline] i [inline]9[/inline], a nije sa [inline]4[/inline] i [inline]9[/inline]; [inline]\text{(D)}[/inline] deljiv je sa [inline]4[/inline] i [inline]9[/inline]; [inline]\text{(E)}[/inline] nije tačno nijedno od navedenih tvrđenja; [inline]\text{N)}[/inline] ne znam.[inline]\enclose{circle}{\text{(A)}}[/inline] deljiv je sa [inline]3[/inline] i [inline]4[/inline], a nije sa [inline]9[/inline]; [inline]\text{(B)}[/inline] deljiv je sa [inline]2[/inline] i [inline]9[/inline], a nije sa [inline]4[/inline]; [inline]\text{(C)}[/inline] deljiv je sa [inline]2[/inline] i [inline]9[/inline], a nije sa [inline]4[/inline] i [inline]9[/inline]; [inline]\text{(D)}[/inline] deljiv je sa [inline]4[/inline] i [inline]9[/inline]; [inline]\text{(E)}[/inline] nije tačno nijedno od navedenih tvrđenja; [inline]\text{N)}[/inline] ne znam.
16.Link zadatka Imaginarni deo kompleksnog broja [inline]\displaystyle\frac{5(1+i)^{24}}{(1+i)^{20}+(1-i)^{18}}[/inline], gde je [inline]i^2=-1[/inline], je:
[inline]\text{(A)}[/inline] [inline]-6[/inline]; [inline]\text{(B)}[/inline] [inline]-4[/inline]; [inline]\text{(C)}[/inline] [inline]-2[/inline]; [inline]\text{(D)}[/inline] [inline]8[/inline]; [inline]\text{(E)}[/inline] [inline]16[/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline]-6[/inline]; [inline]\text{(B)}[/inline] [inline]-4[/inline]; [inline]\text{(C)}[/inline] [inline]-2[/inline]; [inline]\enclose{circle}{\text{(D)}}[/inline] [inline]8[/inline]; [inline]\text{(E)}[/inline] [inline]16[/inline]; [inline]\text{N)}[/inline] ne znam.
17.Link zadatka Ostatak pri deljenju polinoma [inline]x^{2024}+x^{2023}+1[/inline] sa [inline]x^3-x^2+x-1[/inline] jednak je:
[inline]\text{(A)}[/inline] [inline]-x^2-x+5[/inline]; [inline]\text{(B)}[/inline] [inline]x^2-x+3[/inline]; [inline]\text{(C)}[/inline] [inline]-x^2+x+3[/inline]; [inline]\text{(D)}[/inline] [inline]-x^2+4[/inline]; [inline]\text{(E)}[/inline] [inline]x^2+2[/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline]-x^2-x+5[/inline]; [inline]\enclose{circle}{\text{(B)}}[/inline] [inline]x^2-x+3[/inline]; [inline]\text{(C)}[/inline] [inline]-x^2+x+3[/inline]; [inline]\text{(D)}[/inline] [inline]-x^2+4[/inline]; [inline]\text{(E)}[/inline] [inline]x^2+2[/inline]; [inline]\text{N)}[/inline] ne znam.
18.Link zadatka Skup svih vrednosti realnog parametra [inline]a[/inline], za koje jednačina [inline]\left|x^3-3x^2+2x\right|=a[/inline] ima najveći mogući broj rešenja, je:
[inline]\text{(A)}[/inline] [inline]\displaystyle\left(0,\frac{2\sqrt3}{9}\right)[/inline]; [inline]\text{(B)}[/inline] [inline]\displaystyle\left(0,\frac{2\sqrt3}{9}\right][/inline]; [inline]\text{(C)}[/inline] [inline]\{0\}[/inline]; [inline]\text{(D)}[/inline] [inline]\displaystyle\left(\frac{2\sqrt3}{9},\infty\right)[/inline]; [inline]\text{(E)}[/inline] [inline]\displaystyle\left[\frac{2\sqrt3}{9},\infty\right)[/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\enclose{circle}{\text{(A)}}[/inline] [inline]\displaystyle\left(0,\frac{2\sqrt3}{9}\right)[/inline]; [inline]\text{(B)}[/inline] [inline]\displaystyle\left(0,\frac{2\sqrt3}{9}\right][/inline]; [inline]\text{(C)}[/inline] [inline]\{0\}[/inline]; [inline]\text{(D)}[/inline] [inline]\displaystyle\left(\frac{2\sqrt3}{9},\infty\right)[/inline]; [inline]\text{(E)}[/inline] [inline]\displaystyle\left[\frac{2\sqrt3}{9},\infty\right)[/inline]; [inline]\text{N)}[/inline] ne znam.
19.Link zadatka Učenik igra igru u kojoj baca novčić (koji ima dve različite strane) i nakon svakog bacanja beleži dobijeni rezultat, a igra se završava u momentu u kom se po četvrti put pojavi jedna od strana novčića. Ishod igre predstavlja dobijeni niz rezultata. Koliko ima mogućih ishoda opisane igre?
[inline]\text{(A)}[/inline] [inline]35[/inline]; [inline]\text{(B)}[/inline] [inline]56[/inline]; [inline]\text{(C)}[/inline] [inline]70[/inline]; [inline]\text{(D)}[/inline] [inline]112[/inline]; [inline]\text{(E)}[/inline] [inline]117[/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline]35[/inline]; [inline]\text{(B)}[/inline] [inline]56[/inline]; [inline]\enclose{circle}{\text{(C)}}[/inline] [inline]70[/inline]; [inline]\text{(D)}[/inline] [inline]112[/inline]; [inline]\text{(E)}[/inline] [inline]117[/inline]; [inline]\text{N)}[/inline] ne znam.
20.Link zadatka Broj racionalnih članova u razvoju binoma [inline]\left(\sqrt2+\sqrt[3]3\right)^{2023}[/inline] je:
[inline]\text{(A)}[/inline] [inline]0[/inline]; [inline]\text{(B)}[/inline] [inline]337[/inline]; [inline]\text{(C)}[/inline] [inline]338[/inline]; [inline]\text{(D)}[/inline] [inline]675[/inline]; [inline]\text{(E)}[/inline] [inline]1687[/inline]; [inline]\text{N)}[/inline] ne znam.[inline]\text{(A)}[/inline] [inline]0[/inline]; [inline]\enclose{circle}{\text{(B)}}[/inline] [inline]337[/inline]; [inline]\text{(C)}[/inline] [inline]338[/inline]; [inline]\text{(D)}[/inline] [inline]675[/inline]; [inline]\text{(E)}[/inline] [inline]1687[/inline]; [inline]\text{N)}[/inline] ne znam.
Izvor: LINK
Postupci: http://www.matf.bg.ac.rs/files/Reseni_zadaci_sa_prijemnog_ispita_JUN_2023.pdf
Napomena: Ukoliko vam treba pomoć oko rešavanja nekog od zadataka koji dosad nije obrađivan ni na jednoj temi, slobodno zatražite pomoć na forumu „Matemanija“, naravno uz poštovanje forumskih pravila.